MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA CURSO DE MESTRADO EM SISTEMAS E COMPUTAÇÃO

ANDERSON CHAVES DA SILVA

PROBLEMA DO AUMENTO DA CONECTIVIDADE ALGÉBRICA EM CLASSES PARTICULARES DE GRAFOS

Rio de Janeiro 2018

INSTITUTO MILITAR DE ENGENHARIA

ANDERSON CHAVES DA SILVA

PROBLEMA DO AUMENTO DA CONECTIVIDADE ALGÉBRICA EM CLASSES PARTICULARES DE GRAFOS

Dissertação de Mestrado apresentada ao Curso de Mestrado em Sistemas e Computação do Instituto Militar de Engenharia, como requisito parcial para a obtenção do título de Mestre em Ciências em Sistemas e Computação.

Orientadora: Prof^a. Claudia Marcela Justel - D.Sc.

Rio de Janeiro 2018

c2018

INSTITUTO MILITAR DE ENGENHARIA Praça General Tibúrcio, 80 - Praia Vermelha Rio de Janeiro - RJ CEP 22290-270

Este exemplar é de propriedade do Instituto Militar de Engenharia, que poderá incluí-lo em base de dados, armazenar em computador, microfilmar ou adotar qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es) e do(s) orientador(es).

004.69 S586e	da Silva, Anderson Chaves Problema do Aumento da Conectividade Algébrica em Classes Particulares de Grafos / Anderson Chaves da Silva, orientado por Claudia Marcela Justel - Rio de Janeiro: Instituto Militar de Engenharia, 2018.
	94p.: il.
	Dissertação (mestrado) - Instituto Militar de Enge- nharia, Rio de Janeiro, 2018.
	1. Curso de Sistemas e Computação - teses e disser- tações. 1. Grafos. 2. Conectividade Algébrica. 3. Vetor de Fiedler. I. Justel, Claudia Marcela. II. Título. III. Instituto Militar de Engenharia.

INSTITUTO MILITAR DE ENGENHARIA

ANDERSON CHAVES DA SILVA

PROBLEMA DO AUMENTO DA CONECTIVIDADE ALGÉBRICA EM CLASSES PARTICULARES DE GRAFOS

Dissertação de Mestrado apresentada ao Curso de Mestrado em Sistemas e Computação do Instituto Militar de Engenharia, como requisito parcial para a obtenção do título de Mestre em Ciências em Sistemas e Computação.

Orientadora: Prof^a. Claudia Marcela Justel - D.Sc.

Aprovada em 04 de Abril de 2018 pela seguinte Banca Examinadora:

Prof^a. Claudia Marcela Justel - D.Sc. do IME - Presidente

Prof. Ronaldo Ribeiro Goldschmidt - D.Sc. do IME

Prof^a. Carla Silva Oliveira - D.Sc. da ENCE/IBGE

Rio de Janeiro 2018 Dedico este trabalho a meus pais José Vicente e Ivanir da Silva. Qualquer mérito que possa haver na sua conclusão não é menos deles do que meu.

AGRADECIMENTOS

Agradeço a todos os que contribuíram para a realização deste trabalho, direta ou indiretamente.

Agradeço em especial:

Ao Deus revelado em Jesus Cristo, sem o qual não haveria sentido em nenhuma atividade humana.

Aos meus pais Ivanir e José Vicente da Silva, e meu irmão, Cleiverson Silva, por sempre estarem ao meu lado e proverem todos os recursos para que chegasse até aqui.

A cada um dos companheiros deste curso, que trilharam esta jornada comigo.

A Camila Moraes, por estar ao meu lado durante cada etapa.

A minha família e amigos, em especial Gustavo, Henrique e Marcos, por serem parceiros nesta caminhada.

Aos professores que me incentivaram, em especial a minha orientadora Claudia Justel, pela imensa paciência, compreensão, apoio e atenção que dedicou a mim.

Por fim, ao Instituto Militar de Engenharia e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo apoio proporcionado. "E conhecereis a verdade, e a verdade vos libertará. "

JESUS CRISTO

SUMÁRIO

1	INTRODUÇÃO	11
1.1	Motivação	12
1.2	Objetivo	13
1.3	Organização da Dissertação	13
2	CONCEITOS BÁSICOS	14
2.1	Teoria de Grafos	14
2.2	Classes e Famílias de Grafos	16
2.2.1	Árvores <i>starlike</i>	16
2.2.2	Caterpillars e Árvores Broom	18
2.2.3	Grafo Bipartido Completo	19
2.2.4	Grafo <i>split</i> Completo	19
2.2.5	Grafo Aranha (Magra e Gorda)	20
2.3	Matrizes e Resultados	21
2.3.1	Definições básicas sobre matrizes	21
2.3.2	Resultados sobre matrizes	22
2.4	Teoria espectral de grafos	24
3	AUMENTO DA CONECTIVIDADE ALGÉBRICA	31
3.1	Resultados sobre Conectividade Algébrica	31
3.2	Resultados sobre matriz laplaciana e conectividade algébrica para árvores	34
3.3	O problema do aumento máximo da conectividade algébrica	37
3.4	Heurísticas	39
4	CONTRIBUIÇÃO EXPERIMENTAL	43
4.1	Sistema desenvolvido para os experimentos	43
4.2	Experimentos em árvores Double Broom	46
4.3	Experimentos em árvores Broom	51
4.4	Experimentos realizados em árvores <i>starlike</i>	55
5	CONTRIBUIÇÃO TEÓRICA	57
5.1	Sobre aumento da conectividade algébrica para árvores <i>starlike</i>	57
5.2	Sobre aumento da conectividade algébrica para grafos com vértices gêmeos	61

6	CONSIDERAÇÕES FINAIS	65
6.1	Conclusões	65
6.2	Trabalhos Futuros	66
7	REFERÊNCIAS BIBLIOGRÁFICAS	67
8	APÊNDICES	70
8.1	APÊNDICE 1: Experimentos em árvores <i>Double Broom</i>	71
8.2	APÊNDICE 2: Experimentos em árvores <i>Broom</i>	88

RESUMO

A teoria espectral de grafos busca identificar características dos grafos a partir da observação dos espectros de diferentes matrizes associadas aos mesmos. Um importante problema nesta área é conhecido como o Problema do Aumento Máximo da Conectividade Algébrica. O mesmo consiste em, dado um grafo maximizar o valor do parâmetro denominado conectividade algébrica através da adição do menor número de arestas possível. Uma vez que este problema é NP-Completo, existem na literatura algoritmos visando obter soluções aproximadas.

Neste trabalho apresentamos os resultados de experimentos comparativos entre dois destes algoritmos: a heurística de perturbação, HP, e a heurística de excentricidade, HE. Apresentamos também resultados teóricos, os quais descrevem casos em que a inserção de arestas não aumenta a conectividade algébrica.

Efetuamos os experimentos em duas classes de árvores: árvores *double broom* - em particular, uma subfamília das mesmas, as árvores *broom* - e uma subfamília da classe das árvores *starlike*. Para realizar os experimentos desenvolvemos um sistema na linguagem *Python* que permite efetuar comparações entre os resultados das heurísticas.

Para as árvores *double broom*, os resultados obtidos nos experimentos com a HE, considerando até 2 arestas a serem inseridas, revelaram em todos os casos avaliados um aumento da conectividade algébrica maior ou igual aos da HP. Para as árvores *broom*, o aumento obtido pela HE considerando 1 aresta a ser inserida foi sempre maior que o resultado obtido pela HP. Ao serem inseridas 2 arestas, a HE é proporcionou um aumento maior em quase todos os experimentos realizados para as árvores *broom*.

A partir dos experimentos realizados, foi possível identificar algumas arestas as quais, quando inseridas não proporcionavam aumento da conectividade algébrica.

ABSTRACT

The spectral graph theory is a research field that seeks to identify characteristics of graphs from the observation of the spectra of different matrices associated with them. An important problem on this Field is know as the Maximum Algebraic Connectivity Augmentation Problem. It consists of, given a graph, maximizing the value of the algebraic connectivity by adding as few edges as possible. Since the problem is NP-Complete, there are algorithms in the literature to obtain approximate solutions.

On this work, we present the results of comparative experiments between two of these algorithms: the perturbation heuristic, PH, and the eccentricity heuristic, EH. We also present theoretical results, which describe scenarios in which the insertion of edges does not increase the algebraic connectivity.

We performed the experiments on two classes of trees: double-broom trees - in particular, a subfamily known as broom trees - and a subfamily of the class known as starlike trees. To perform the experiments we developed a system, written in Python programming language, which is able to make comparisons between the results of the heuristics.

For the double broom trees, the results obtained in the experiments with EH, considering up to 2 edges to be inserted, revealed in all cases an increase in algebraic connectivity greater than or equal to PH. For the broom trees, the increase obtained by the EH considering 1 edge to be inserted was always greater than the result obtained by PH. When 2 edges are inserted, EH provided a larger increase in almost all the experiments performed on the broom trees.

Based on these experiments, it was possible to identify some edges which, when inserted, did not increase algebraic connectivity.

1 INTRODUÇÃO

A teoria espectral de grafos é o campo de pesquisa que se dedica ao estudo dos grafos com relação aos espectros correspondentes às diferentes matrizes associadas a estes. Muitas propriedades do grafo podem ser inferidas a partir da observação destes espectros, tais como a conexidade do grafo, biparticionamento, regularidade, entre outras.

Neste contexto, um importante parâmetro espectral a ser analisado é a conectividade algébrica, definida como o segundo menor autovalor da matriz laplaciana de um grafo. Este conceito foi definido por Fiedler (1973), e é amplamente estudado pelo fato de ser um bom parâmetro para a determinação do grau de conectividade de um grafo, além de estar relacionado a diversas outras propriedades. É fato conhecido, por exemplo, que o valor deste parâmetro é zero se e somente se o grafo for um grafo desconexo, e que o mesmo possui possui relação com o diâmetro do grafo. Segundo Nagarajan et al. (2015), este parâmetro é também um bom indicador do grau de robustez de uma rede, a capacidade da mesma se manter conectada caso um ou mais de seus links apresentem problemas.

Em Mosk-Aoyama (2008), foi definido um importante problema relacionado a este parâmetro, o "Problema do Aumento Máximo da Conectividade Algébrica". Este problema consiste em, dadas algumas restrições, identificar um conjunto de arestas a serem incluídas no grafo de modo a maximizar a conectividade algébrica do grafo resultante. No mesmo artigo, foi provado que este problema pertence a classe dos problemas NP-Completos, fato que motiva a criação de um algoritmo heurístico para obter uma solução aproximada.

Ghosh e Boyd (2006), propuseram uma heurística para este fim, a Heurística de Perturbação (HP), a qual consiste em um procedimento iterativo no qual as arestas são adicionadas com base nos componentes do vetor de Fiedler do grafo em cada iteração. Posteriormente, Wang e Mieghem (2008) também propuseram um outro procedimento, no qual as arestas são escolhidas com base no grau dos vértices e em um critério de aleatoriedade.

Já em Oliveira (2012) é proposto um algoritmo heurístico alternativo, para grafos representando redes complexas, denominado Heurística de Excentricidade (HE). Assim como a heurística de perturbação, este também é um procedimento iterativo, onde uma nova aresta é adicionada ao grafo original a cada iteração. Entretanto, o critério de escolha da aresta é baseado nos valores de excentricidade dos vértices. Posteriormente, em Rocha e Chaves (2013), foram realizados testes comparativos entre a HP e a HE, nos quais a Heurística de Excentricidade apresentou um bom desempenho em relação a Heurística de Perturbação para os grafos escolhidos.

Diante disso, a proposta deste trabalho é efetuar uma análise de diferentes grafos e seus espectros verificando o comportamento da conectividade algébrica quando são inseridas arestas, e os critérios que influenciam este comportamento.

1.1 MOTIVAÇÃO

A conectividade algébrica é por vezes mais descritiva do que os parâmetros de conectividade de vértices e conectividade de arestas. É considerada por alguns autores como a informação mais importante do espectro de um grafo, como mencionado em Mohar et al. (1991), e já tem sido demonstrada sua aplicabilidade em diversos problemas, dentre eles:

• Cálculo do número isoperimétrico de um grafo: O número isoperimétrico de um grafo é um parâmetro relacionado à conectividade, o qual é útil para determinar se um grafo possui grandes conjuntos de vértices para os quais há poucas arestas incidentes. Um valor alto deste parâmetro indica um grafo bem conectado. Foi demonstrado em Mohar (1989) que para qualquer grafo, existe um limite inferior do número isoperimétrico relacionado à conectividade algébrica (conforme equação 3.2).

• Problema do corte máximo: O problema do corte máximo consiste em, dado um grafo G, caracterizado por um conjunto de vértices V, identificar um subconjunto de vértices $S \subset V$ tal que o número de arestas incidentes simultaneamente em vértices dos conjuntos $S \in S^C$ é máximo. Foi demonstrado em Mohar e Svatopluk (1990) que o número de arestas incidentes em um corte máximo relacionado a G também está relacionado a conectividade algébrica.

Desta forma, a maximização deste parâmetro torna-se uma problema de grande interesse. Esta tarefa foi previamente investigada em trabalhos como o de Maas (1985), relacionado a análise da propagação de fluidos através de tubulações interligadas. Estudos mais recentes incluem o trabalho de Kim e Mesbahi (2006), onde uma abordagem baseada em uma estratégia gulosa para o problema é proposta, e o de Erinc e Carpin (2013), onde a maximização da conectividade algébrica tem como objetivo auxiliar times de robôs na exploração de ambientes desconhecidos.

1.2 OBJETIVO

O objetivo deste trabalho é efetuar uma análise de diferentes grafos e seus espectros verificando o comportamento da conectividade algébrica quando são inseridas arestas, e os critérios que influenciam este comportamento. Além disso, demonstramos que existem famílias de grafos para as quais a inserção de determinadas arestas não aumenta a conectividade algébrica.

1.3 ORGANIZAÇÃO DA DISSERTAÇÃO

Este trabalho está organizado da seguinte forma.

O Capítulo 2 contém conceitos de teoria dos grafos, álgebra linear e teoria espectral de grafos, fundamentais para a compreensão dos assuntos abordados nos capítulos seguintes.

O Capítulo 3 trata especificamente do problema do aumento da conectividade algébrica, abordado de maneira enfática neste trabalho.

Os Capítulos 4 e 5 incluem respectivamente as contribuições experimentais e teóricas apresentadas neste trabalho.

Por fim, o Capítulo 6 expõe os resultados e conclusões obtidas neste trabalho, bem como sugestões para contribuições futuras.

Por fim, o Capítulo 7 contém as referências bibliográficas, e o Capítulo 8 contém 3 apêndices, relacionados aos experimentos com árvores *Double Broom* e *Broom*, e uma descrição das principais classes construídas no sistema desenvolvido para os experimentos.

2 CONCEITOS BÁSICOS

2.1 TEORIA DE GRAFOS

As definições básicas de teoria dos grafos que utilizamos a seguir são baseadas nos trabalhos de Szwarcfiter (1986).

Nos referiremos a um **grafo** como sendo uma dupla G = (V, E), onde V é um conjunto finito não vazio de n = |V| elementos $v_i \in V, i \in \{1, 2, ..., n\}$, denominados **vértices**, e Eum conjunto de m = |E| pares não ordenados de elementos distintos, do tipo $(v_i, v_j) \in E$, para $i \neq j, i, j \in \{1, 2, ..., n\}$, denominados **arestas**. Nesse caso, os vértices $v_i e v_j$ são os **vértices incidentes** ou **extremidades da aresta** (v_i, v_j) . Dizemos que duas arestas são **adjacentes** caso possuam uma extremidade em comum, e que dois vértices são adjacentes em G caso exista uma aresta incidente em ambos. Quando necessário, utilizaremos a notação V(G) e E(G) para nos referirmos ao conjunto de vértices e de arestas em G, respectivamente. Utilizaremos a notação G - v para indicar a remoção do vértice v do conjunto de vértices de G, bem como todas as arestas incidentes no mesmo. Se V_1 é um conjunto de vértices, a notação $V \setminus V_1$ indica o conjunto formado por todos os vértices de V não presentes em V_1 .

Seja u um vértice em um grafo G = (V, E). Denotaremos por **grau(u)** a cardinalidade do conjunto de arestas incidentes em u. Utilizamos a notação $\delta(G)$ e $\Delta(G)$ para nos referirmos aos graus dos vértices de menor e maior grau, respectivamente, em G.

Denominamos vizinhança de u ao conjunto de vértices adjacentes a $u, N(u) = \{v \in V/(u, v) \in E\}$. Dois vértices u, v são ditos vértices gêmeos, caso N(u) = N(v).

Dizemos que G = (V, E) é um **grafo completo** no caso específico em que todos os vértices distintos de V estão conectados por uma aresta. Denotaremos por K_n o grafo completo de n vértices. O **grafo complemento** de G é o grafo $G^C = (V, E^C)$ no qual dois vértices em V são adjacentes se e somente se não forem adjacentes em G. Utilizamos também a notação O_n para nos referirmos ao **grafo vazio**, de n vértices, isto é, o grafo formado por n vértices e um conjunto vazio de arestas.

Um caminho P_{v_1,v_k} é definido como uma sequência de vértices $v_1, ..., v_k$, tal que $(v_i, v_{i+1}) \in E, 1 \le i \le k - 1$. O valor k - 1 corresponde ao comprimento do caminho. Denominamos caminho simples ao caminho que possui todos os vértices distintos. Um

ciclo é um caminho $v_1, v_2, ..., v_k, k \ge 3$, no qual $v_1, ..., v_{k-1}$ é um caminho simples, e $v_1 = v_k$. O grafo que não possui ciclos é chamado de **grafo acíclico**.

A distância entre dois vértices $u, v \in V$ corresponde ao comprimento do menor caminho entre $u \in v$, e a representamos por d(u, v). A excentricidade de um vértice $v \in V$, denotada por e(v), é a maior distância entre o vértice v e qualquer outro vértice do grafo. O diâmetro de um grafo G, denotado por diam(G), corresponde ao comprimento do caminho que representa a maior distância entre pares de vértices do grafo.

Um **grafo conexo** é definido como um grafo para o qual existe um caminho entre qualquer par de vértices. Um **grafo desconexo** é um grafo que não é conexo.

Seja v um vértice em um grafo conexo G. Dizemos que v é uma **articulação**, caso o grafo G - v seja um grafo desconexo.

Seja G = (V, E) um grafo. O grafo G' = (V', E') que satisfaz $V' \subseteq V$ e $E' \subseteq E$ é dito um **subgrafo** de G. Além disso, se G' é tal que dois vértices são adjacentes em G' se e somente se são adjacentes em G, dizemos que G' é um **subgrafo induzido** de G. Se $V' \subset V$, $G \setminus V'$ é o subgrafo induzido de G ao remover os vértices de V' e as arestas incidentes a vértices de V'. Caso $V' = \{v\}$ onde $v \in V$, utilizamos também a notação G - v.

Um grafo que não possua articulações é chamado de **grafo biconexo**. Chamamos de **bloco** em um grafo a um subgrafo maximal biconexo.

A união de dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ corresponde à operação $(G_1 \cup G_2) = (V_1 \cup V_2, E_1 \cup E_2)$. Se G = (V, E) e $G_2 = (V, E_2)$, notamos $G + G_2 = (V, E \cup E_2)$, também denotado $G + E_2$. No caso particular $|E_2| = 1$, para $E_2 = \{e\}$, $G + G_2 = G + e$.

Definimos uma **subdivisão** de uma aresta $e = (u, v) \in E$, como sendo a substituição de e em G por duas novas arestas $e_1 = (u, w)$, $e_2 = (w, v)$, onde w corresponde a um novo vértice em V. Se um grafo G' puder ser obtido de G através de sequentes subdivisões, dizemos que G' é uma subdivisão de G.

Uma clique em G é um subconjunto $S \subseteq V$ de seus vértices tal que, para todo $u, v \in S, (u, v) \in E$. Chamamos um conjunto independente a um subconjunto de vértices em um grafo não adjacentes entre si.

A conectividade de arestas de um grafo é definida como a cardinalidade do menor conjunto de arestas que, ao serem retiradas, tornam o grafo desconexo. Analogamente, a conectividade de vértices é definida como a cardinalidade do menor conjunto de vértices os quais ao serem removidos (juntamente com as respectivas arestas incidentes) tornam o grafo desconexo.

Uma árvore é um grafo conexo e acíclico. Denominamos folha a um vértice cujo

grau é igual a 1. Uma árvore com pelo menos dois vértices possui no mínimo duas folhas.

Um **grafo caminho** é uma árvore na qual dois de seus vértices possuem grau 1 (folhas), e os vértices restantes possuem grau 2. Um **grafo ciclo** é um grafo conexo onde todos os seus vértices possuem grau 2. Utilizamos a notação P_n para indicar um grafo caminho de n vértices.

O grafo estrela de n vértices é a arvore na qual um de seus vértices possui grau n-1, enquanto todos os demais possuem grau 1. Utilizamos a notação $K_{1,n-1}$ para indicar uma estrela com n vértices.

 $S \subseteq V$ é um conjunto independente no grafo G = (V, E) se para todo $u, v \in S$, $(u, v) \notin E$. $S \subseteq V$ é uma clique em G se S é um conjunto independente no grafo G^C .

Diremos que G é um **grafo ponderado** no caso em que a cada aresta $e \in E(G)$ é atribuído um valor w(e), denominado **peso** da aresta e.

2.2 CLASSES E FAMÍLIAS DE GRAFOS

Nesta seção são apresentadas algumas classes de grafos utilizadas neste trabalho. A primeira delas refere-se às árvores *starlike*, as quais recebem este nome por serem semelhantes ao grafo estrela. Em seguida apresentamos as árvores *caterpillar*, bem como duas famílias de árvores desta classe: as *double broom* e as *broom*. Por último apresentamos a classe dos grafos bipartidos completos; a classe dos grafos *split* completos e uma família particular dos grafos denominados grafos aranha.

2.2.1 ÁRVORES STARLIKE

As árvores starlike são amplamente estudadas na literatura. Existem algumas definições e caracterizações desta classe de árvores. Uma possível definição é dada Lepović e Gutman (2002), Omidi e Tajbakhsh (2007) como sendo árvores que possuam um único vértice de grau maior que 2. De forma semelhante, em Watanabe e Schwenk (1979) e Patuzzi et al. (2014) são definidas como subdivisões do grafo estrela $K_{1,m}$. Convém observar que a última definição, para o caso m = 1 admite-se a possibilidade de grafos caminho. Caracterizamos as **starlike** como árvores com um único vértice de grau máximo $\Delta \geq 3$ e cuja remoção resulta na união de Δ caminhos P_{n_i} , $1 \leq i \leq \Delta$. Desta forma, S é starlike apenas se $S - v = P_{n_1} \cup P_{n_2} \cup ... \cup P_{n_{\Delta}}$, sendo v o único vértice grau máximo Δ . Desta tacaremos as árvores desta classe de grafos no caso particular em que todos os caminhos obtidos após a remoção do vértice de maior grau possuem o mesmo comprimento, ou seja

 $n_{i_j}=p,\,\forall\,1\leq j\leq \Delta.$ Utilizamos neste último caso a notação S(p,p,...,p).

A Figura 2.1 apresenta como exemplo uma árvore *starlike* S(2, 2, 2, 2, 2, 2) com 11 vértices, grau máximo 5 tal que $S - v = 5P_2$, para v o único vértice de grau máximo igual a 5.

FIG. 2.1: Uma Starlike $\mathrm{S}(2,\,2,\,2,\,2,\,2)$

2.2.2 CATERPILLARS E ÁRVORES BROOM

Conforme Harary e Schwenk (1973), uma árvore com pelo menos 3 vértices é chamada **caterpillar** caso a remoção de todos os seus vértices folha resulte em um grafo caminho. O caminho obtido é denominado a **espinha dorsal** do *caterpillar*. Em um *caterpillar*, todos os vértices fazem parte da espinha dorsal, ou são vizinhos de um vértice que faz parte da espinha dorsal. Grafos *caterpillar* são subclasses de grafos bastante estudadas, devido à suas propriedades estruturais, como ressaltado em de Carvalho et al. (2015).

A Figura 2.2 mostra um *caterpillar* com 13 vértices; ao remover todas as folhas dessa árvore obtemos o grafo caminho P_5 .

FIG. 2.2: Exemplo de um grafo caterpillar

Uma subclasse das árvores caterpillar, as árvores double broom possuem característica particular. Uma árvore **double broom** de n vértices é uma árvore construída da seguinte forma: seja P_{d-1} um grafo caminho com d-1 vértices, e sejam os vértices de P_{d-1} rotulados de $s_1, ..., s_{d-1}$ na ordem do caminho. Então, para $0 \le k \le \lfloor \frac{n-d+1}{2} \rfloor$, adicionemos k folhas adjacentes ao vértice s_1 , e l = n - k - d + 1 folhas ao vértice s_{d-1} . Utilizamos a notação T(n, d, k) para indicar a árvore double broom de n vértices, diâmetro d e parâmetro k.

A Figura 2.3 apresenta uma árvore *double broom* com *n* vértices. As árvores *double broom* para as quais k = 1 são chamadas árvores **broom**.

Em Fallat e Kirkland (1998) e Grone e Merris (1990), podem ser encontrados estudos sobre autovalores da matriz Laplaciana destas árvores, e em Richter e Rocha (2016) as mesmas são classificadas e ordenadas de acordo com sua conectividade algébrica (segundo menor autovalor da matriz Laplaciana do grafo).

FIG. 2.3: Exemplo de uma árvore double broom T(n, d, k)

2.2.3 GRAFO BIPARTIDO COMPLETO

Dizemos que o grafo G = (V, E) é um **grafo bipartido** caso o conjunto V possa ser dividido entre dois conjuntos disjuntos, $V_1 \in V_2$, de forma que existir uma aresta e = $(u, v) \in E$ implica em $u \in V_1$, $v \in V_2$. Caso existam todas as possíveis arestas entre $V_1 \in$ V_2 , dizemos que G é um grafo **bipartido completo**.

Existem numerosos estudos a respeito dos grafos bipartidos e bipartidos completos, como por exemplo Chung e Graham (1975), Bernhart e Kainen (1979) e Rada e Tineo (2004). A Figura 2.4 apresenta um grafo bipartido completo. Utilizamos a notação $K_{p,q}$ para o grafo bipartido completo em que $|V_1| = p$, e $|V_2| = q$.

FIG. 2.4: Exemplo de um grafo bipartido completo $K_{4,3}$

2.2.4 GRAFO SPLIT COMPLETO

Um grafo G é denominado grafo **split** se, e somente se, o seu conjunto de vértices pode ser particionado em um conjunto independente e uma clique. Dizemos que G é um grafo **split completo** no caso em que cada um dos p vértices do conjunto independente é adjacente a todos os q vértices da clique. Utilizamos a notação SC(p,q) para indicá-lo.

Grafos *split* podem ser reconhecidos em tempo linear, e em tempo constante através de técnicas de paralelismo, conforme demonstrado em Nikolopoulos (1995). A Figura 2.5 apresenta um grafo *split* com 10 vértices, e cujo conjunto de vértices pode ser particionado em uma clique de tamanho 6 e um conjunto independente de tamanho 4.

FIG. 2.5: Exemplo de um grafo do tipo split

2.2.5 GRAFO ARANHA (MAGRA E GORDA)

Conforme Jamison e Olariu (1992), definimos um **grafo aranha** como sendo um grafo G = (V, E) no qual V pode ser particionado em três conjuntos $S, C \in R$, onde os conjuntos $S = \{s_1, ..., s_k\}$ e $C = \{c_1, ..., c_k\}$, para algum $k \ge 1$, formam respectivamente um conjunto independente e uma clique; além disso, s_i é adjacente a c_j se e somente se i = j (aranha magra), ou s_i é adjacente a c_j se e somente se $i \ne j$ (aranha gorda); e, finalmente, existem todas as arestas entre os vértices de R e C e não existe nenhuma aresta entre os vértices de R e S. Chamaremos os conjuntos S, C e R respectivamente de pernas, corpo e cabeça da aranha.

A Figura 2.6 apresenta um exemplo de um grafo aranha magra com 13 vértices, |S| = |C| = 5 e |R| = 3.

Em Del-Vecchio e Jones (2012) foram realizados estudos sobre a matriz de adjacência nesta família de grafos.

FIG. 2.6: Exemplo de um grafo aranha magra

2.3 MATRIZES E RESULTADOS

A seguir são apresentadas algumas definições sobre matrizes que estão relacionadas com este trabalho. Foi utilizado como fonte o livro Horn e Johnson (1990). Outras definições básicas de álgebra linear utilizadas, não apresentadas no trabalho atual, podem ser encontradas na mesma referência.

2.3.1 DEFINIÇÕES BÁSICAS SOBRE MATRIZES

Neste trabalho, tipicamente trabalharemos com matrizes de dimensão $m \times n$, cujos elementos são números reais, de forma que $A \in \mathbb{R}^{m \times n}$. Notaremos por $a_{i,j}$, $1 \leq i \leq m$, $1 \leq j \leq n$ o elemento da matriz linha *i* coluna *j* da matriz $A \in \mathbb{R}^{m \times n}$.

Uma matriz $A \in \mathbb{R}^{m \times n}$ é **quadrada** quando m = n.

A transposta de uma matriz A, A^T , é a matriz resultante da permutação de suas linhas e colunas, ou seja, para todo $i, j, a_{i,j}^T = a_{j,i}$. Uma submatriz A' de A é uma matriz obtida através da exclusão de algumas linhas ou colunas de A. Uma matriz quadrada A é simétrica caso seja igual a sua transposta, ou seja, $A^T = A$. Neste caso, $a_{i,j} = a_{j,i}$ para todo par i, j. A é uma matriz diagonal se $a_{i,j} = 0$ quando $i \neq j$. Se todas as entradas da diagonal de A são iguais a 1, então A é a matriz identidade denotada por I em $\mathbb{R}^{n \times n}$. O conjunto $\{x \in \mathbb{R}^n : Ax = 0\}$ é o espaço nulo ou núcleo da matriz A, denotado por ker(A). Denotamos o posto de A por rank(A). Uma matriz $A \in \mathbb{R}^{m \times n}$ é uma matriz positiva, indicada por A > 0, se todas as suas entradas são positivas. A notação A > Bindica que, para toda entrada a_{ij} de A e toda entrada b_{ij} de B, $a_{ij} > b_{ij}$. Se $S \subset \mathbb{R}^n$, o complemento ortogonal de S é o conjunto $S^{\perp} = \{x \in \mathbb{R}^n : x.y = 0\}$ para todo $y \in S$.

Uma matriz $A \in \mathbb{R}^{n \times n}$ da forma

$$A = \begin{bmatrix} A_{11} & 0 \\ & \ddots & \\ 0 & & A_{kk} \end{bmatrix}$$

na qual $A_{ii} \in \mathbb{R}^{n_i \times n_i}$, i = 1, ..., k, $\sum_{i=1}^k n_i = n$ e todos os seus blocos acima e abaixo da diagonal de blocos A_{ii} são blocos nulos, é chamada matriz **diagonal em blocos**.

Seja $A \in \mathbb{R}^{m \times n}$. Se um escalar λ e um vetor não nulo $x \in \mathbb{R}^n$ satisfazem a equação:

$$Ax = \lambda x, x \in \mathbb{R}^n, x \neq 0, \lambda \in \mathbb{R}$$

$$(2.1)$$

então, λ é denominado um **autovalor** de A, e x é denominado um **autovetor** de Aassociado a λ . No caso em que $A \in \mathbb{R}^{n \times n}$ é simétrica, possui n autovalores reais (com repetição). Indicamos por $\sigma(A)$ o conjunto de todos os autovalores de A.

O polinômio característico de A é dado por $p_A(\lambda) = det(A - \lambda I)$, onde $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ são os autovalores de A, e I é a matriz identidade.

Seja $A \in \mathbb{R}^{n \times n}$. O raio espectral de A é definido como $\rho(A) = max\{|\lambda| : \lambda \in \sigma(A)\}$. Se A é uma matriz positiva, o teorema de Perron-Frobenius, garante que $\rho(A) \in \sigma(A)$. Nesse caso, denominamos este valor como o valor de Perron de A, e um autovetor correspondente a $\rho(A)$ como sendo um vetor de Perron.

Uma matriz $A' \in \mathbb{R}^{n \times n}$ é **positiva definida** se

 $x^T A' x > 0$ para todo vetor x não nulo em \mathbb{R}^n

e é dita **positiva semidefinida** se

 $x^T A' x \ge 0$ para todo vetor x não nulo em \mathbb{R}^n .

Uma matriz $A \in \mathbb{R}^{n \times n}$ é **invertível** se existe matriz $A^{-1} \in \mathbb{R}^{n \times n}$ (a **matriz inversa** de A) tal que $A^{-1}A = I$ e $AA^{-1} = I$.

2.3.2 RESULTADOS SOBRE MATRIZES

O teorema a seguir determina os autovalores de uma matriz simétrica a partir do coeficiênte de Rayleigh da matriz. Se $M \in \mathbb{R}^{n \times n}$ é uma matriz simétrica e $x \in \mathbb{R}^n$ um vetor não nulo, o **coeficiente de Rayleigh** R(M, x) é:

$$R(M,x) = \frac{x^T M x}{x^T x}$$

Teorema 2.1. (Rayleigh) Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica, $\lambda_1 \leq ... \leq \lambda_n$ seus autovalores, e $v_1, ..., v_n$ seus autovetores correspondentes. Então

$$\lambda_1 = \min_{x \neq 0} \frac{x^T A x}{x^T x} = \min_{|x|=1} x^T A x$$

$$\lambda_2 = \min_{x \neq 0, x \perp v_1} \frac{x^T A x}{x^T x} = \min_{|x|=1, x \perp v_1} x^T A x$$
$$\lambda_n = \max_{x \neq 0} \frac{x^T A x}{x^T x} = \max_{|x|=1} x^T A x$$

de forma mais geral, se $S_0 = \{0\}$, e S_k denota a o espaço gerado por $v_1, ..., v_k$, e S_k^{\perp} denota o complemento ortogonal de S_k , então podemos escrever:

$$\lambda_{k} = \min_{x \neq 0, x \in S_{k-1}^{\perp}} \frac{x^{T} A x}{x^{T} x} = \min_{|x|=1, x \in S_{k-1}^{\perp}} x^{T} A x$$

Outro resultado interessante mostra que os produtos de matrizes $AA^T \in A^T A$ possuem exatamente os mesmos autovalores.

Teorema 2.2. (Godsil (1993)) Seja A uma matriz e A^T a matriz transposta correspondente. Então os autovalores não nulos de AA^T e A^TA são iguais, e possuem a mesma multiplicidade.

Demonstração. : Seja v um autovetor de $A^T A$ associado ao autovalor $\lambda \neq 0$. Então, $A^T A v = \lambda v$. Portanto,

$$\lambda Av = A\lambda v = (AA^T)Av$$

assim temos que Av é um autovetor de AA^T associado ao autovalor $\lambda.$ Tomando u=Av, temos que:

$$\lambda A^T u = A^T \lambda u = (A^T A) A^T u$$

assim temos que $A^T u$ é um autovetor de $A^T A$ associado ao autovalor λ .

Sejam $U = ker(A^T A - \lambda I)$, e $V = ker(AA^T - \lambda I)$. Observe que para todo vetor $u \in U$ temos que $Au \in V$, enquanto que para todo vetor $v \in V$, temos que $A^T v \in U$.

Como a matriz $A^T A$ leva o conjunto U em si mesmo de maneira sobrejetiva, temos que $U \in V$ tem a mesma dimensão.

O Teorema 2.3 permite determinar os autovalores da matriz inversa, caso existir, a partir dos autovalores da matriz original. O Corolário 2.1 determina relações entre duas matrizes $A \in B$, onde $A \ge B$.

Teorema 2.3. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz invertível. Se $\lambda \neq 0$ é autovalor de A, então $\frac{1}{\lambda}$ é autovalor de A^{-1} .

Demonstração. Suponha que $A \in \mathbb{R}^{n \times n}$ é uma matriz invertível, e que λ é autovalor de A correspondente ao autovetor v. Então $Av = \lambda v$. Multiplicando-se à esquerda e à direita por A^{-1} , observamos que $v = A^{-1}\lambda v = \lambda A^{-1}v$. Uma vez que A é invertível, $\lambda \neq 0$. Portanto, temos que $\frac{1}{\lambda}v = A^{-1}v$, e portanto, $\frac{1}{\lambda}$ é autovalor de A^{-1} .

Corolário 2.1. (Horn e Johnson (1990)) : Sejam $A, B \in \mathbb{R}^{n \times n}$, duas matrizes simétricas, e sejam $\lambda_1(A) \leq ... \leq \lambda_n(A)$ e $\lambda_1(B) \leq ... \leq \lambda_n(B)$ seus respectivos autovalores ordenados. Então:

- (a) Se A > 0 e B > 0, então $A \ge B$, se e somente se $B^{-1} \ge A^{-1}$.
- (b) Se $A \ge B$, então $\lambda_i(A) \ge \lambda_i(B)$ para cada i = 1, ..., n.

2.4 TEORIA ESPECTRAL DE GRAFOS

Dado um grafo G = (V, E), tal que |V| = n e |E| = m, a **matriz de adjacência** A(G)corresponde à matriz $A \in \mathbb{R}^{n \times n}$ tal que, para cada entrada a_{ij} de A, $a_{ij} = 1$ se existe uma aresta entre os vértices v_i e v_j , e $a_{ij} = 0$ caso contrário.

Uma **matriz de incidência** de G é uma matriz $M \in \mathbb{R}^{n \times m}$, tal que, para cada entrada m_{ij} de M, $m_{ij} = 1$ se a aresta e_j incide no vértice v_i , e 0 caso contrário.

Definimos a **matriz Laplaciana** de G, L = L(G), a matriz $n \times n$ tal que:

$$L_{i,j} = \begin{cases} grau(v_i), & \text{se } i = j, \\ -1, & \text{se } i \neq j, (i,j) \in E, \\ 0, & \text{se } i \neq j, (i,j) \notin E. \end{cases}$$

Utilizaremos a notação $\lambda_i(G), i \in \{1, ..., n\}$ para nos referirmos aos n autovalores associados a matriz laplaciana de G, considerados em ordem crescente, contados conforme sua multiplicidade.

O segundo menor autovalor de L(G), $\lambda_2(G)$, é definido como a **conectividade algébrica**. Um autovetor correspondente a este autovalor é denominado **vetor de Fiedler**.

A próxima definição considera excepcionalmente que ao grafo G é atribuída uma orientação de suas arestas. Seja G = (V, E) um grafo tal que $V = v_1, ..., v_n$, e $E = e_1, ..., e_n$. A **matriz de incidência com respeito a uma orientação dada**, β , é aquela cujas entradas são:

$$\beta_{i,j} = \begin{cases} +1, & \text{se } e_j = (v_i, w), w \in V \\ -1, & \text{se } e_j = (w, v_i), w \in V \\ 0, & \text{caso contrário.} \end{cases}$$

A seguinte proposição descreve um importante resultado com relação à matriz β :

Proposição 2.1. Bapat (2014) Seja G é um grafo de ordem $n \in k$ componentes conexos, e seja β uma matriz de incidência com respeito a uma orientação em G. Então $rank(\beta) = n - k$.

A matriz Laplaciana de um grafo G, L(G) = L verifica três propriedades importantes, dadas pelas proposições a seguir.

Proposição 2.2. L(G) é positiva semi-definida.

Demonstração. Note que, se β é uma matriz de incidência com respeito a uma orientação de G, então $L = BB^T$. Então, para todo vetor $x \in \mathbb{R}^n$ não nulo,

$$x^{T}Lx = x^{T}BB^{T}x = ||Bx||^{2} \ge 0$$
(2.2)

e portanto a matriz L(G) é positiva, semi-definida.

Proposição 2.3. L(G) possui autovalor igual a zero.

Demonstração. Note que, uma vez que a soma de todas as linhas de L é zero, temos que o vetor $x = (1, ..., 1)^T$ é autovetor de L associado ao autovalor 0, pois,

$$Lx = \begin{bmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} \alpha_{1i} \\ \vdots \\ \sum_{i=1}^{n} \alpha_{ni} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = 0. \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

e portanto, 0 é autovalor de L(G).

Através deste resultado, e da equação 2.2, podemos afirmar:

$$0 = \lambda_1(G) \le \lambda_2(G) \le \dots \le \lambda_n(G) \tag{2.3}$$

O Teorema 2.4 considera um subgrafo H de um grafo G e a relação entre os autovalores da matriz Laplaciana de ambos.

Teorema 2.4. Mohar et al. (1991) Seja G = (V, E) um grafo de ordem n, e seja H um subgrafo de G obtido através da remoção de uma aresta em G. Então:

$$0 = \lambda_1(L(H)) = \lambda_1(L(G)) \le \lambda_2(L(H)) \le \lambda_2(L(G)) \le \dots \le \lambda_n(L(H)) \le \lambda_n(L(G))$$

Demonstração. : Vamos definir uma orientação para G, isto é, para cada aresta $e \in E$, vamos definir de forma arbitrária um vértice como inicial e o outro como terminal. Seja K_G a matriz de incidências correspondente, de dimensão $|V| \times |E|$ definida de modo que:

$$K_{G_{ue}} = \begin{cases} 1, & \text{se } u \text{ \'e um v\'ertice terminal de } e, \\ -1, & \text{se } u \text{ \'e um v\'ertice inicial de } e, \\ 0, & \text{se } e \text{ não \'e incidente em } u. \end{cases}$$

Pode ser verificado que

$$L(G) = K_G K_G^T$$

onde K_G^T refere-se a matriz transposta de K_G . Conforme demonstrado no Teorema 2.2, exceto com relação à multiplicidade do autovalor zero, podemos afirmar que os espectros de L(G) e de $K_G^T K_G$ coincidem.

Seja H um subgrafo de G obtido através da remoção de uma aresta de G. A matriz $K_H^T K_H$ pode ser obtida através da remoção da linha e da coluna correspondente em $K_G^T K_G$. Por causa da propriedade de entrelaçamento de submatrizes, podemos afirmar que os autovalores de $K_H^T K_H$ se entrelaçam com os autovalores de $K_G^T K_G$. Logo, novamente pelo Teorema 2.2, podemos afirmar que os autovalores de L(H) se entrelaçam com os autovalores de L(G), e o teorema é verdadeiro.

A seguir são apresentadas as definições de dois tipos de árvores que são derivadas dos elementos do vetor de Fiedler das mesmas. Inicialmente definimos o conceito de valor característico para chegar nas condições de uma árvore ser de tipo I ou II.

Seja $y = (y_1, y_2, ..., y_n)$ um vetor de Fiedler correspondente ao grafo G. Então, pode ser definida uma função bijetora $f : V \to R^n$, de forma que $f(v_i) = y_i, i \in \{1, 2, ..., n\}$. Os componentes do vetor y são chamados **valores característicos** de G. Além disso, se v é um vértice em G, então indicaremos por y(v) a coordenada de y correspondente ao vértice v. Dizemos que um vértice possui valoração positiva, negativa ou zero, caso o seu valor característico seja positivo, negativo ou zero, respectivamente.

Teorema 2.5. Fiedler (1975) : Seja G um grafo conexo, e seja y um vetor de Fiedler de G. Então, exatamente um dos seguintes casos ocorre:

Caso A: Apenas um único bloco B_0 em G contém tanto vértices de valoração positiva quanto de valoração negativa. Cada um dos blocos restantes possui apenas vértices com valoração positiva, vértices com valoração negativa ou apenas vértices com valoração zero. Se P é um caminho que se inicia em um vértice de B_0 , contendo no máximo duas articulações em cada bloco, e que contém apenas um vértice v em B_0 , então P tem a propriedade de que as valorações das articulações existentes em P formam ou uma sequência crescente, decrescente, ou uma sequência de zeros, de acordo com y(v) > 0, y(v) < 0, ou y(v) = 0; no último caso, todos os vértices em P tem valoração zero.

Caso B: Nenhum bloco de G contém tanto vértices com valoração positiva quanto vértices com valoração negativa. Existe um único vértice z contendo valoração zero e adjacente a um vértice com valoração não zero. Esse vértice z é uma articulação. Cada bloco contém (com exceção de z) ou apenas vértices com valoração positiva, vértices com valoração negativa, ou apenas vértices com valoração zero. Se P é um caminho que se inicia em z contendo no máximo duas articulações em cada bloco, então P tem a propriedade de que as valorações de suas articulações ou aumentam, e nesse caso todas as valorações dos vértices de P são (com exceção de z) positivas, ou diminuem, e nesse caso todas as valorações dos vértices em P são (com exceção de z) negativas, ou todas as valorações dos vértices em P são zero. Cada caminho contendo tanto vértices positivamente valorados quanto vértices negativamente valorados passa por z.

FIG. 2.7: Um grafo completo K_3

A Figura 2.7 ilustra o um grafo completo $G = K_3$, correspondente ao caso A do Teorema 2.5. Neste caso, temos que $V(G) = \{v_1, v_2, v_3\}$, e podemos escrever a matriz laplaciana correspondente como:

$$L(G) = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

Desta forma, pode ser determinado um vetor de Fiedler y associado a $L(K_3)$ tal que os valores característicos dos vértices em V(G) sejam $y(v_1) = -\frac{1}{2}$, $y(v_2) = -\frac{1}{2}$ e $y(v_3) = 1$.

FIG. 2.8: Um grafo correspondente ao caso B do teorema 2.5

Na Figura 2.8, podemos observar ilustrado o grafo G_B , cujo conjunto de vértices corresponde a $V(G') = \{v_1, v_2, v_3, v_4\}$. Neste caso, G' corresponde ao caso B do Teorema 2.5, e tem como laplaciana correspondente:

$$L(G') = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

O vetor de Fiedler y' para L(G'), pode ser definido de tal forma que os valores característicos dos vértices em V(G') sejam $y'(v_1) = \frac{1}{2}$, $y'(v_2) = 0$, $y'(v_3) = \frac{1}{2}$ e $y'(v_4) =$ -1. Pode-se observar nesse caso, que o vértice v_2 é o único contendo valoração zero, correspondente ao vértice z do teorema.

No mesmo artigo Fiedler (1975) é apresentado um resultado semelhante ao resultado anterior para o caso particular de árvores.

Teorema 2.6. (Fiedler (1975)) Seja T uma árvore e para $v_i \in V, f(v_i) = y_i, 1 \le i \le n$, seus valores característicos. Então, dois casos podem ocorrer:

Caso A. Todos os valores de y_i são diferentes de zero. Então T contém exatamente uma aresta (p,q) tal que $y_p > 0$ e $y_q < 0$. Os valores caracteríticos dos vértices ao longo de qualquer caminho em T que inicie em p e que não contenha q serão crescentes; os valores característicos dos vértices ao longo de qualquer caminho que inicie em q e não contenha p serão decrescentes. Os vértices p e q são chamados **vértices característicos**.

Caso B. O conjunto $N_0 = \{i \in \{1, ..., n\} : y_i = 0\}$ é não vazio. Então o grafo T_0 induzido por N_0 em T é conexo e há exatamente um vértice $j \in N_0$ possuindo ao menos um vizinho que não pertence a N_0 . Os valores característicos ao longo de qualquer caminho em T partindo de j podem crescer, decrescer ou não variar. O vértice j é chamado de vértice característico.

Por meio de seus valores característicos, as árvores são classificadas como **Tipo I** ou **Tipo II** caso ocorram os casos B ou A, respectivamente, do Teorema 2.6.

A Figura 2.9 apresenta duas árvores, $T_1 \in T_2$, correspondentes aos casos B e A, respectivamente. O vértice v é o vértice característico em $T_1 \in T_1$ é uma árvore de Tipo I; os vértices $i \in j$ são os vértices característicos em $T_2 \in T_2$ é uma árvore de tipo II.

FIG. 2.9: Duas árvores e seus respectivos valores característicos

3 AUMENTO DA CONECTIVIDADE ALGÉBRICA

Este capítulo tem como objetivo definir formalmente o problema do aumento máximo da conectividade algébrica e apresenta também alguns resultados e trabalhos relevantes relacionados ao problema. Descreve o funcionamento dos algoritmos de Ghosh e Boyd (2006) e de Oliveira (2012), os quais foram utilizados para a realização dos experimentos descritos no Capítulo 4.

3.1 RESULTADOS SOBRE CONECTIVIDADE ALGÉBRICA

A seguir apresentamos alguns resultados importantes considerados neste trabalho a respeito do aumento da conectividade algébrica, já conhecidos na literatura.

Teorema 3.1. (Fiedler (1973)) Seja G um grafo qualquer, e G_1 o grafo formado a partir da remoção de k vértices de G, bem como das respectivas arestas incidentes. Então $\lambda_2(G_1) \ge \lambda_2(G) - k$.

Teorema 3.2. (Fiedler (1973)) Se $G_1 = (V, E_1)$ e $G_2 = (V, E_2)$ são dois grafos cujas arestas de cada um formam dois conjuntos disjuntos, então $\lambda_2(G_1) + \lambda_2(G_2) \leq \lambda_2(G_1 \cup G_2)$.

 $Demonstração. : Nós temos que L(G_1 \cup G_2) = L(G_1) + L(G_2). Assim, \lambda_2(G_1 \cup G_2) = \min_{x \in W, |x|=1} x^T L(G_1) x + x^T L(G_2) x \ge \min_{x \in W, |x|=1} x^T L(G_1) x + \min_{x \in W, |x|=1} x^T L(G_2) x = \lambda_2(G_1) + \lambda_2(G_2)$

Do resultado a seguir pode-se observar que acrescentar uma ou mais arestas em Gnão diminui a conectividade algébrica, pois, se G = (V, E), o grafo resultante da operação G + e é igual a $G \cup G'$, onde $G' = (V, E \cup \{e\})$.

Corolário 3.1. Fiedler (1973) A função $\lambda_2(G)$ é não-decrescente para grafos com o mesmo conjunto de vértices, i.e., $\lambda_2(G_1) \leq \lambda_2(G_2)$, se $G_1 \subseteq G_2$ (e G_1, G_2 tem os mesmos conjuntos de vértices).

A Proposição 3.1 relaciona o valor da conectividade algébrica zero com a não conexidade do grafo. Inspirado nessa propriedade, o segundo menor autovalor da matriz Laplaciana do grafo foi denominado conectividade algébrica. Os resultados a seguir foram publicados em Fiedler (1989).

Proposição 3.1. Seja G = (V, E). Então, G é desconexo, se e somente se $\lambda_2(G) = 0$.

Demonstração. Suponha que G seja um grafo desconexo, possuindo p > 1 componentes conexos $C_1, ..., C_p$. Então, os vértices de G podem ser numerados de forma que L(G) seja uma matriz diagonal em blocos, onde cada bloco corresponde a um componente conexo C_i , de forma que:

$$L(G) = \begin{bmatrix} L(C_1) & 0 & 0 & 0 \\ \hline 0 & L(C_2) & 0 & 0 \\ \hline 0 & 0 & \ddots & 0 \\ \hline 0 & 0 & 0 & L(C_p) \end{bmatrix}$$

Sem perda de generalidade, seja $x^T = (x_1, ..., x_n)^T \in \mathbb{R}^n$ um vetor tal onde $x_i = 1$, caso $v_i \in C_1$ e $x_i = 0$, caso contrário. Podemos então escrever a equação que relaciona os autovalores de L(G) = L como:

$$Lx = \begin{bmatrix} L(C_1) & 0 & 0 & 0 \\ 0 & L(C_2) & 0 & 0 \\ \hline 0 & 0 & \ddots & 0 \\ \hline 0 & 0 & 0 & L(C_p) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = 0$$

onde $\mathbb{1} = (1, ..., 1)^T$. Aplicando-se o mesmo procedimento para cada um dos p componentes conexos de G, pode-se verificar que G possui p autovetores linearmente independentes associados ao autovalor 0. Logo, zero é um autovalor de L(G) com multiplicidade maior que 1, e portanto $\lambda_2(G) = 0$.

Para provar a outra condição, suponha que $\lambda_2(G) = 0$. Logo, a multiplicidade algébrica de 0 em $\sigma(L)$ é no mínimo 2, e portanto, $rank(L) \leq n - 2$.

Seja β uma matriz de incidência com respeito a uma orientação de G. Então, podemos concluir que $rank(L) = rank(\beta\beta^T) = rank(\beta) \leq n-2$. Porém, pelo Teorema 2.1, podemos concluir que $n-2 \geq rank(\beta) = n-k$, onde k é o número de componentes conexos em G. Portanto, $k \geq 2$, e G é desconexo.

Teorema 3.3. O grafo completo K_n possui conectividade algébrica $\lambda_2(K_n) = n$.

Teorema 3.4. O grafo bipartido completo $K_{p,q}$ possui conectividade algébrica $\lambda_2(K_{p,q}) = min\{p,q\}, para p,q \ge 2.$

Teorema 3.5. Seja P_n um grafo caminho de n vértices, C_p um grafo ciclo de p vértices, e $K_{1,q-1}$ um grafo estrela de q vértices. Então:

a)
$$\lambda_2(P_n) = 2(1 - \cos\frac{\pi}{n}).$$

b) $\lambda_2(C_p) = 2(1 - \cos\frac{2\pi}{n}).$
c) $\lambda_2(K_{1,q-1}) = 1.$

A seguir apresentamos alguns resultados sobre limites superiores e inferiores relacionados à conectividade algébrica.

Corolário 3.2. Se G é um grafo que contém um conjunto independente de $p \ge 2$ vértices. Então $\lambda_2(G) \le n - p$

Corolário 3.3. Se G é um grafo não completo, então $\lambda_2(G) \leq n-2$.

Teorema 3.6. Se G é um grafo não completo, então $\lambda_2(G) \leq \delta(G)$.

Conforme apresentado na equação 2.3, a conectividade algébrica é sempre maior ou igual a zero. O Teorema 3.7 determina um limite inferior para λ_2 estritamente maior.

Teorema 3.7. Mohar e Svatopluk (1990) Seja G um grafo. Então

$$\lambda_2(G) \ge \frac{4}{n.diam(G)}$$

O número isoperimétrico de G é denotado por i(G), e é uma medida de conectividade do grafo. Seja $X \in V$ um conjunto de vértices de cardinalidade $|X| \leq \frac{n}{2}$, e δX o conjunto de arestas incidentes simultaneamente em vértices de X e X^c . Então, o número isoperimétrico é caracterizado pela equação:

$$i(G) = \min_{X \subseteq V} \frac{|\delta X|}{|X|} \tag{3.1}$$

Em Mohar (1989) é demonstrado que existe uma relação entre a número isoperimétrico de um grafo e a conectividade algébrica, conforme a seguinte inequação:

$$i(G) \ge \frac{\lambda_2(G)}{2} \tag{3.2}$$

O resultado a seguir serve como base para alguns dos resultados teóricos descritos no Capítulo 5. O teorema determina uma condição necessária e suficiente para que a adição de arestas num grafo G com n vértices não aumente o valor da conectividade algébrica.

Teorema 3.8. (Kirkland et al. (2011)) : Suponha que existam grafos $G \in H$ tais que $H = \tilde{H} + O_{n-p}$, onde G é conexo, $e \tilde{H}$ é um subgrafo conexo de G^c de p vértices. Então, $\lambda_2(G \cup H) = \lambda_2(G)$ se e somente se existe um vetor de Fiedler de G cujas entradas são constantes nos vértices de \tilde{H} .

3.2 RESULTADOS SOBRE MATRIZ LAPLACIANA E CONECTIVIDADE ALGÉ-BRICA PARA ÁRVORES

Quando nos restringimos à classe de árvores, podem ser obtidos resultados específicos sobre ramos de Perron e o valor da conectividade algébrica. Os resultados a seguir tratam da matriz Laplaciana de uma árvore, ramos de Perron e a conectividade algébrica para árvores de tipo I.

A matriz Laplaciana é uma matriz não invertível. Mas eliminando uma linha e uma coluna dessa matriz, obtemos uma matriz que possui matriz inversa. A Proposição 3.2 mostra que eliminando a linha e a coluna da matriz Laplacina L(T) correspondente a um vértice v_k qualquer da árvore, a matriz resultante L_k é invertível e cada elemento da matriz L_k^{-1} tem um significado particular na árvore.

Proposição 3.2. Kirkland e Newmann (1995) : Suponha que T é uma árvore ponderada de vértices $v_1, ..., v_n$, com matriz laplaciana L, e seja L_k a submatriz principal de L formada pela remoção da k-ésima linha e coluna de L. Então, a entrada (i, j) de L_k^{-1} é igual a $\sum_{e \in P_{i,j}} \frac{1}{w(e)}$, onde $P_{i,j}$ é o conjunto de arestas de T que estão tanto no caminho do vértice v_i ao vértice v_k , quanto no caminho do vértice v_j ao vértice v_k .

Demonstração. A prova será realizada por indução.

Caso base: Suponha, sem perda de generalidade, que k = n. Então, para n = 2, se $w(e_{v_1,v_2}) = \alpha$:

$$L = \left[\begin{array}{cc} \alpha & -\alpha \\ -\alpha & \alpha \end{array} \right]$$

Portanto,

$$L_k = [\alpha] \in L_k^{-1} = \left[\frac{1}{\alpha}\right]$$

Logo, para n = 2, $L_k^{-1} = \frac{1}{\alpha} = \sum_{e \in P_{i,j}} \frac{1}{w(e)}$, e o resultado se verifica.

Passo indutivo: Suponha que a proposição é verdadeira para $n_0 - 1 \ge 2$, e que Té uma árvore ponderada de n_0 vértices. Sem perda de generalidade, seja o vértice v_1 um vértice pendente de T, adjacente ao vértice v_2 .

Seja $w(e_{v_1,v_2}) = \alpha$, o peso da aresta e_{v_1,v_2} , e seja T' a árvore ponderada induzida pelos vértices $v_2, ..., v_{n_0}$, e M sua matriz laplaciana.

Seja M_{n_0} a submatriz principal de M formada pela remoção de sua última linha e coluna, e e_1 o vetor de norma 1 tal que $e_1^t = (1, 0, ..., 0)$. Segue-se que:

$$L = \begin{bmatrix} \alpha & -\alpha e_1^t \\ \hline -\alpha e_1 & M_{n_0} + \alpha e_1 e_1^t \end{bmatrix}.$$

Pode-se então ser facilmente verificado que

$$L_{n_0}^{-1} = \left[\begin{array}{c|c} \frac{1}{\alpha} + e_1^t M_{n_0}^{-1} e_1 & e_1^t M_{n_0}^{-1} \\ \hline M_{n_0}^{-1} e_1 & M_{n_0}^{-1} \end{array} \right].$$

Assim, para $i, j \ge 2$, a proposição é válida para a entrada (i, j) através da hipótese de indução.

Além disso, uma vez que o vértice v_1 é um vértice pendente, para $j \ge 2$, $P_{v_1,v_j} = P_{v_2,v_j}$. Logo, as entradas (1, j) e (j, 1) podem ser obtidas pelas expressões $e_1^t M_{n_0}^{-1}$ e $M_{n_0}^{-1} e_1$, e a proposição também é válida para estas entradas. Finalmente, uma vez que o vértice v_1 de T é um vértice pendente e adjacente ao vértice v_2 , temos que $P_{v_1,v_1} = P_{v_1,v_2} \cup \{e_{v_1,v_2}\}$. Uma vez que $w(e_{v_1,v_2}) = \alpha$, temos que $\sum_{e \in P_{v_1,v_2}} \frac{1}{w(e)} = \frac{1}{\alpha} + \sum_{e \in P_{v_2,v_2}} \frac{1}{w(e)} = \frac{1}{\alpha} + e_1^t M_{N0}^{-1} e_1$, o que corresponde ao valor da entrada (1, 1). Portanto, a proposição é válida para todas as entradas de $L_{n_0}^{-1}$. Isso conclui o passo de indução, e a prova.

No caso em que T é uma árvore não ponderada, podemos considerar como sendo 1 o peso de cada aresta, e assim as entradas da matriz L_k^{-1} correspondem a quantidade de arestas de T que estão no caminho do vértice v_i ao vértice v_k e simultaneamente no caminho do vértice v_j ao vértice v_k .

Consideremos como exemplo a árvore de tipo I T_1 , ilustrada na Figura 2.7, e seja v_k o seu vértice característico. Logo, os vértices de $V(T_1)$ podem ser rotulados de tal forma
a corresponder a seguinte matriz laplaciana,

$$L(T_1) = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ -1 & 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

de forma que a quarta linha e coluna são correspondentes ao vértice característico v_k , a primeira linha e coluna correspondem à única folha adjacente a v_k , e as demais linhas e colunas correspondem aos 4 vértices restantes. Sejam $v_1, ..., v_n$ os vértices correspondentes as linhas e colunas 1, ..., n de $L(T_1)$. Logo, as matrizes $L_k \in L_k^{-1}$, correpondentes a matriz formada pela remoção da k-ésima linha e coluna de $L(T_1)$ e sua respectiva matriz inversa são:

$$L_{k} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}, L_{k}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Como pode ser observado, cada entrada de posição i, j de L_k^{-1} corresponde ao número de arestas em comum nos caminhos entre os vértices correspondentes $v_i \in v_j$ e o vértice $v_k \in T_1$.

Com relação a uma árvore T sem pesos nas arestas, nos referiremos a um **ramo** de Tem v_k como sendo um dos componentes conexos de T resultantes da remoção do vértice v_k e de todas as arestas incidentes no mesmo. Uma vez que T é uma árvore, existe um único caminho entre qualquer par de vértices v_i e v_j . Portanto, pela Proposição 3.2, a entrada (i, j) da matriz L_k^{-1} é maior ou igual a zero, e é estritamente positiva se e somente se os vértices v_i e v_j pertencem ao mesmo ramo de T em v_k . Logo, L_k^{-1} é uma matriz similar a uma matriz diagonal em blocos, cujo número de blocos coincide com o grau do vértice v_k . Seguindo as definições de Kirkland et al. (1996) e Kirkland et al. (1998), nos referiremos a cada um destes blocos como sendo a **matriz bottleneck** de cada um dos ramos de T em v_k , e a matriz completa como sendo a matriz *bottleneck* de T em v_k .

Em Kirkland e Newmann (1995) é definido o valor de Perron de um ramo de T

em v_k como sendo o valor de Perron da matriz *bottleneck* correspondente. Um ramo é um **ramo de Perron**, caso o valor de Perron deste ramo seja igual ao raio espectral de L_k^{-1} .

Com relação a árvore T_1 , apresentada na Figura 2.7, a conectividade algébrica possui valor de 0, 38. A matriz *bottleneck* de cada ramo em v_k consiste nas três submatrizes de L_k^{-1} correspondentes aos 3 blocos da matriz *bottleneck* L_k^{-1} . Os valores de Perron de cada ramo são respectivamente 1; 0, 38; 0, 38. Uma vez que $\lambda_2(T_1) = 0, 38$ os ramos de Perron são aqueles correspondentes aos dois componentes conexos de dois vértices, resultantes da remoção do vértice v_k .

Com base nesta definição, é enunciado o seguinte teorema que permite determinar o valor da conectividade algébrica de uma árvore de tipo I usando o raio espectral da matriz *bottleneck* definida a partir do vértice característico:

Teorema 3.9. (Kirkland e Newmann (1995)) Seja T uma árvore ponderada de vértices 1,...,n. Então T é uma árvore de Tipo I de vértice característico k se e somente se existem dois ou mais ramos de Perron de T em k. Além disso, nesse caso, a conectividade algébrica de T é $\frac{1}{\rho(L_k^{-1})}$, e se v é um autovetor correspondente a conectividade algébrica, então v pode ser permutado e particionado de forma que cada um dos subvetores resultantes não nulos é um vetor de Perron para a matriz bottleneck de um ramo de Perron em k.

Como pode ser observado através dos seus componentes do vetor de Fiedler na Figura 2.7, a árvore T_1 é uma árvore de Tipo I, e conforme mencionado, possui dois ramos de Perron. Além disso, o raio espectral da respectiva matriz *bottleneck* é igual a $\rho(L_k^-1) = 2,618$, e $\lambda_2(T_1) = \frac{1}{\rho(L_k^-1)} = 0,38$. Portanto, o teorema se verifica para T_1 .

3.3 O PROBLEMA DO AUMENTO MÁXIMO DA CONECTIVIDADE ALGÉBRICA

Apresentada por Fiedler (1973), a conectividade algébrica tem se tornado objeto de extenso estudo na literatura nas últimas décadas. Em Nagarajan et al. (2015), este parâmetro é apresentado como sendo um bom indicador do grau de robustez de uma rede. Recentemente foi apresentado em Barreto e Oliveira (2017) um estudo que visa relacionar de maneira objetiva o incremento da conectividade algébrica com o parâmetro de confiabilidade de rede.

Neste conexto, um importante tópico abordado na teoria espectral de grafos consiste na maximização deste parâmetro sujeito a certas condições. Em Mosk-Aoyama (2008), o problema é apresentado da seguinte forma: dado um grafo de entrada qualquer, e um valor limiar, encontrar o conjunto de arestas de tamanho mínimo a ser adicionado ao grafo de modo que a conectividade algébrica do grafo resultante seja maior ou igual ao valor limiar definido. De forma semelhante, é apresentada uma versão alternativa do problema: dado o grafo de entrada, adicionar um número fixo de arestas de modo a maximizar a conectividade algébrica.

Tomemos como exemplo o grafo ciclo de 5 vértices, $C_5 = (V, E)$, tal que $V = \{v_1, v_2, v_3, v_4, v_5\}, E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_5, v_1)\}$, para o qual $\lambda_2(C_5) = 1.3820$. Ao adicionar as 4 arestas do conjunto $S_1 = \{(v_1, v_3), (v_1, v_4), (v_2, v_5), (v_3, v_5)\}$, obtemos o grafo C'_5 , de conectividade algébrica $\lambda_2(C'_5) = 3$. Entretanto, uma escolha mais cuidadosa demonstra que este mesmo valor pode ser alcançado pela adição das 3 arestas contidas no conjunto $S_2 = \{(v_1, v_3), (v_1, v_4), (v_2, v_4)\}$. A Figura 3.1 ilustra o exemplo descrito.

FIG. 3.1: Grafos C_5 , $C_5 + S_1 \in C_5 + S_2$

Convém ressaltar que não necessariamente o melhor conjunto de t arestas tem como subconjunto o melhor conjunto de l < t arestas a ser incluído em G. Identificar t melhores arestas, uma a uma, a serem incluídas em um grafo por exemplo não necessariamente provê a solução ótima para o problema de incluir o melhor conjunto de t arestas. No entanto, pode revelar-se uma abordagem eficaz para obter uma solução aproximada.

Formalmente, o problema de decisão associado ao problema do aumento máximo da conectividade algébrica (PAMCA) é definido da seguinte maneira: dado um grafo G e um inteiro $t \in \mathbb{N}$ e um número real positivo x, determinar o menor conjunto de arestas $E_{cand} \subseteq E^c, |E_{cand}| = t$ a ser inserido em G, de modo que a conectividade algébrica do grafo resultante seja maior ou igual a x. Foi demonstrado em Mosk-Aoyama (2008) que este problema pertence á classe NP-Completo, através da sua redução ao problema da 3-Coloração de Grafos.

Dessa forma, a menos que P=NP, torna-se impossível a construção de um algoritmo de complexidade do pior caso polinomial para alcançar a solução ótima para o problema

PAMCA. Assim, diversas pesquisas tem sido realizadas com o objetivo de determinar classes de grafos para as quais é possível identificar quais arestas produzem o maior aumento da conectividade algébrica. Além disso, esforços tem sido empregados com o objetivo de desenvolver algoritmos que providenciem heurísticas para o problema. Alguns destes algoritmos tem apresentado bons resultados, ao serem aplicados a grafos de estruturas especiais. Entretanto, há indícios de que resultados melhores ainda podem ser obtidos.

3.4 HEURÍSTICAS

Existem na literatura diversos trabalhos que apresentam heurísticas para resolver o PAMCA. No trabalho de Sydney et al. (2013) é proposta e avaliada uma estratégia com o objetivo de maximizar a conectividade algébrica através do reposicionamento de um certo percentual das arestas em um grafo. A mesma busca identificar quais arestas podem ser removidas de modo a proporcionar o menor decremento da conectividade algébrica e em seguida, quais podem ser inseridas de modo a proporcionar o maior incremento.

A Heurística de Perturbação (denotada por HP) foi apresentado por Ghosh e Boyd (2006), e utiliza o vetor de Fiedler para determinar um conjunto de t arestas a serem incluídas no grafo de entrada, com o objetivo de aumentar o valor da conectividade algébrica.

Seja $G_{base} = (V, E_{base})$ o grafo de entrada, e y o vetor de Fiedler associado a $\lambda_2(G)$. Então, G possui n valores característicos $y_i, i \in \{1, ..., n\}$, associados aos vértices $v_1, ..., v_n \in$ V. Um conjunto de arestas $E_{cand} = E_{base}^C$ é considerado. A cada uma das t iterações do algoritmo, uma aresta $(v_i, v_j) \in E_{cand}$ é escolhida, de modo a maximizar o valor de $(y_i - y_j)^2$. Implicitamente, pode-se notar que a cada iteração do algoritmo, a aresta escolhida incide nos vértices de maior e menor valor característico, respectivamente. O Algoritmo HP descreve em pseudo-código a Heurística de Perturbação.

Com relação ao custo computacional, a etapa mais despendiosa desta estratégia, a qual domina a complexidade do algoritmo, consiste na tarefa de calcular o vetor de Fiedler. Para isso, o algoritmo de Lanczos é particularmente útil para o cálculo de um pequeno número de autovetores, e pode ser utilizado de forma a reduzir a complexidade da tarefa, através de um processo tridiagonalização. Se cada linha da matriz laplaciana $L \in \mathbb{R}^{n \times n}$ possui v entradas no nulas, é possível efetuar a tridiagonalização da mesma em vn + 4n multiplicações. Logo, a partir da matriz tridiagonal, a complexidade para se determinar o vetor de Fiedler para L se torna $\mathcal{O}(n.m)$ (Meyer (2000)). Uma vez que o HP Entrada: $t, G_{base} = (V, E_{base})$ Saída: $E \subseteq E_{base}^C$, |E| = t1: Se $t > |E_{cand}|$ então Pare; 2: $E = \emptyset;$ 3: Calcular $L(G) = L(G_{base});$ 4: **Para** i = 1, ..., t faça Determinar vetor Fiedler $\mathbf{w} \in R^n : L(G)\mathbf{w} = \lambda_2(G)\mathbf{w};$ 5:Calcular $(w_p - w_q)^2 = \max_{\{(i,j) \in E_{cand}\}} (w_i - w_j)^2;$ 6: L(G) = L(G + (p,q));7: 8: $E_{cand} = E_{cand} - \{(p,q)\};$ 9: $E = E \cup \{(p,q)\};$ 10: Retorne E;

loop principal será executado t vezes para a escolha de t arestas, a complexidade total da HP será $\mathcal{O}(t.n.m) = \mathcal{O}(n.m)$.

No trabalho de Wang e Mieghem (2008) a estratégia de HP é comparada com uma nova estratégia que adiciona uma aresta entre o vértice de menor grau e um vértice aleatório.

Já o trabalho de Oliveira (2012) propõe um algoritmo no qual arestas são escolhidas baseadas no grau dos vértices do grafo, bem como no valor de excentricidade dos mesmos. O algoritmo foi denominado Heurística de Excentricidade (HE).

A cada uma das t iterações do algoritmo, uma aresta uma aresta $(u, v) \in E^c$ é escolhida com o objetivo de aumentar a conectividade algébrica do grafo atual. A aresta escolhida deve possuir em suas extremidades um vértice u de excentricidade máxima (i.e., um valor de excentricidade igual ao diâmetro do grafo), enquanto a outra extremidade deve incidir em um vértice v de excentricidade igual a diam(G) - 1. A distância entre os vértices u e v também deve ser igual a diam(G) - 1. Além disso, u ou v não devem ser vértices folha no grafo original. Como critério de desempate, o algoritmo seleciona a aresta (u, v) com maior valor de e(u) e grau(v). No trabalho de Rocha e Chaves (2013), como critério adicional, foi considerado também o grau(u) correspondente a aresta selecionada (u, v). Neste mesmo trabalho, foram efetuados diversos testes comparativos em grafos gerados de forma aleatória, comparando as arestas sugeridas pelos algoritmos de HP e HE, os quais demonstraram melhores resultados em quase todos os casos por parte da aresta escolhida pela HE. O Algoritmo HE descreve em pseudo-código a Heurística de Excentricidade.

HE Entrada: $t, G_{base} = (V, E_{base})$ Saída: $E \subseteq E_{base}^C$, |E| = t; Passo 1: $G = G_{base}$; 2: Se $t > |E^C|$ então pare; 3: $E = \emptyset$; 4: Para i = 1, ..., t faça 5: **Para** $v \in V$ faça calcular $e_G(v)$; $d = diam(G) = \max_{v \in V} e_G(v);$ 6: **Para** $v \in V$ faça calcular $d_G(v)$; 7: Determinar $(a, b) \in E_{base}^C$ de forma que 8: $d_G(a,b) = d-1$ 9: 10: $e_G(a) = d$ and $e_G(b) = d - 1$ 11: $d_G(a)$ máximo ou máximo menos um $d_G(b)$ máximo ou máximo menos um; 12: $E = E \cup \{(a, b)\};$ 13: $G = G \cup \{(a, b)\};$ 14: $E^C_{base} = E^C_{base} - \{(a, b)\};$ 15:16: Retorne E;

Para o caso da HE, a tarefa que domina a complexidade é a determinação das excentricidades dos vértices de G, que pode ser obtida usando a busca em largura (Breath First Search). Uma vez que esta tarefa será executada no máximo t vezes (para a escolha de t arestas), a complexidade do pior caso da HE se torna $\mathcal{O}(t.n.m) = \mathcal{O}(n.m)$.

Apesar de a complexidade para HE e HP ser a mesma no pior caso ($\mathcal{O}(n^2)$ para grafos esparsos e $\mathcal{O}(n^3)$ para grafos densos), em geral a heurística de excentricidade possui menor tempo de execução que a de perturbação.

Além da Heurísitica de Excentricidade, o trabalho de Oliveira (2012) também determinou a melhor aresta a ser inserida em cada uma das árvores da família *double broom*, T(n, d, k), nos casos em que d = 3 e 4, e $n \leq 20$.

Em Rocha e Chaves (2013), foram realizados diversos testes comparativos entre a HP e a HE. Para isso, grafos gerados de forma aleatória, através do software *Nauty*, foram submetidos aos dois algoritmos, e comparou-se a conectividade algébrica resultante dos mesmos após a inclusão das arestas escolhidas por cada um. Verificou-se que a HE apresentava resultados satisfatórios e em alguns casos superiores aos da HP. Além disso, demonstrou-se que o número de operações executadas pela HE era inferior para algumas classes de grafos. No mesmo trabalho os autores propuseram a alteração no algoritmo original que considerou além dos parâmetros de excentricidade também os graus dos vértices incidentes nas arestas candidatas. Os experimentos mostraram que estas alterações proporcionavam melhores resultados na escolha das arestas para um maior aumento da conectividade algébrica.

4 CONTRIBUIÇÃO EXPERIMENTAL

Neste trabalho, efetuamos diferentes experimentos comparativos em grafos de 3 tipos: árvores *broom*, árvores *double broom* e árvores *starlike*. Este capítulo dedica-se a descrever os experimentos realizados, bem como a metodologia empregada e os resultados obtidos. Os experimentos aqui descritos revelaram padrões que serviram de base para a construção de alguns dos resultados teóricos contidos no capítulo seguinte.

Nossos experimentos foram realizados em um computador de processador Intel(R) Core i5, de 2.8 GHz, memória ram de 8GB. Utilizamos a biblioteca NetworkX (versão 1.11) para a geração e manipulação dos grafos, em conjunto com a biblioteca Numpy(versão 1.11.2) para o cálculo dos autovalores e autovetores. As representações gráficas dos grafos foram efetuadas utilizando a biblioteca Matplotlib (versão 1.5.2).

4.1 SISTEMA DESENVOLVIDO PARA OS EXPERIMENTOS

Foi desenvolvido um sistema na linguagem *Python* para efetuar os experimentos comparativos. Através deste sistema é possível também visualizar os grafos gerados, construir tabelas e relatório de resultados com diversos parâmetros dos grafos avaliados.

O sistema foi dividido em duas camadas distintas: Núcleo e Experimentos.

A camada de núcleo consiste de classes essenciais para o funcionamento do sistema, responsáveis por gerar os grafos das diferentes categorias analisadas, bem como obter e persistir dados relacionados aos mesmos. Podem ser entendidas como um conjunto de ferramentas para a realização dos experimentos, e só devem ser alteradas quando for necessário inserir um novo comportamento pertinente a todo o sistema.

A camada de experimentos contém as classes descritivas de cada experimento realizado, bem como as classes correspondentes às heurísticas utilizadas. Cada experimento corresponde a uma classe nesta camada, e faz uso das ferramentas existentes na classe núcleo. Nenhuma classe da camada de núcleo acessa a camada de experimentos.

Com relação à representação de grafos, fizemos uso da classe *NetworkX.Graph*, contida na biblioteca *NetworkX*. Contudo, devido às necessidades específicas dos experimentos, nós a estendemos, adicionando novas funcionalidades, tais como obter a conectividade algébrica do grafo armazenado, identificar os vértices característicos ou obter a matriz *bottleneck.* Por isso, criamos a nossa representação própria de grafos, a classe "Grafo", a qual internamente faz uso da representação da *NetworkX*.

O funcionamento de cada experimento pode ser dividido em três etapas: 1. Geração de todos os grafos a serem analisados 2. Geração de todos os dados do experimento, isto é, dados pertinentes a cada um dos grafos gerados. 3. Persistência dos dados.

Entrada. Foram programados diversos tipos diferentes de experimentos, correspondentes a árvores *double broom* e *starlike*. Em cada experimento, são informados os parâmetros de entrada correspondentes para a geração dos grafos: intervalo correspondente ao número de vértices, diâmetro e folhas, no caso de árvores *double broom*, e grau máximo e número de vértices em cada caminho resultante da remoção do vértice de grau máximo, no caso de árvores *starlike*.

Saída. A saída do sistema consiste em um conjunto de tabelas do tipo ".csv", contendo como colunas os dados solicitados em cada experimento. O sistema também gera visualizações gráficas de cada grafo analisado. O diretório de saída é informado na própria programação do experimento. O diretório padrão é "Resultados\[Nome do Experimento]".

É possível também estender o sistema para trabalhar com outras famílias de grafos, bem como heurísticas diferentes das utilizadas. Neste caso, o algoritmo correspondente aos novos grafos deverá ser programado na classe de geração de grafos, e novas heurísticas devem ser programadas na camada de experimentos.

A Figura 4.1 apresenta o diagrama de classes a nível conceitual do sistema desenvolvido, contendo as principais classes do sistema. O Apêndice 8.3 contém as descrições detalhadas a respeito da funcionalidade de cada classe apresentada no diagrama.

Iniciamos também o desenvolvimento de uma terceira camada, a qual consiste em uma interface de comunicação com o usuário do sistema. A camada de interface contém as classes responsáveis pela representação destas interfaces de comunicação.

Para a construção da interface, utilizamos a ferramenta Qt, versão 4.2.1, em conjunto com a biblioteca PyQt para a tradução da mesma para a linguagem Python.

FIG. 4.1: Diagrama de classes a nível conceitual do sistema desenvolvido

4.2 EXPERIMENTOS EM ÁRVORES DOUBLE BROOM

Nesta seção serão descritos experimentos comparativos realizados em árvores do tipo *dou*ble broom. O objetivo inicial foi dar continuidade aos relizados no trabalho de Oliveira (2012) para árvores *double broom* com valores de diâmetro 3 e 4. Em nossos testes, identificamos qual tipo de aresta proporcionava o maior aumento da conectividade algébrica quando incluída nesta família restrita de árvores.

Inicialmente, fixamos o número de vértices n e diâmetro d, e avaliamos todas as possíveis árvores da classe *double broom* acrescentando uma aresta. Nos experimentos, confirmamos os resultados de Oliveira (2012) para as árvores de diâmetro 3 e 4: arestas de tipo 4 e tipo 8, respectivamente, conforme definidas no trabalho citado, quando inseridas nestas árvores produzem o melhor aumento da conectividade algébrica. Entretanto, não fomos capazes de observar nenhum padrão significativo na escolha das melhores arestas quando consideramos o diâmetro $d \ge 5$.

Em seguida, efetuamos diferentes testes comparativos em relação ao desempenho de duas das heurísticas apresentadas no capítulo anterior: HP e HE. Fixamos novamente valores de n e d, e realizamos testes em todas as *double broom* dentro destes parâmetros. Em cada teste, foram identificadas as arestas, $e_{HE} e e_{HP}$, determinadas pela HE e a HP, respectivamente. Cada aresta selecionada foi incluída na árvore avaliada e então calculamos a conectividade algébrica do grafo resultante. Foi identificada também a aresta que proporcionava o maior aumento na conectividade algébrica possível utilizando um algoritmo de força bruta, a qual denotamos por e_{FB} . Alguns destes resultados, correspondentes às árvores de diâmetro d = 20, são demonstrados nas Tabelas 4.1 e 4.2. Os resultados completos podem ser vistos no Apêndice 1.

Para todos os valores de diâmetro dos experimentos, a HE demonstrou grande eficiência. Dos 575 grafos avaliados, em 533 casos a aresta e_{HE} proporcionou um melhor resultado quando incluída do que a aresta e_{HP} , e, em apenas 27, a aresta e_{HP} apresentou o melhor resultado. A Tabela 4.3 demonstra os resultados gerais obtidos, comparando o número de melhores resultados por parte da HP e da HE. A coluna " λ_2 Máximo" representa o número de casos em que a melhor aresta escolhida por uma das duas heurísticas coincidia com a aresta escolhida pelo algoritmo de força bruta.

Também efetuamos experimentos com o objetivo de identificar o melhor conjunto de t = 2 arestas a serem adicionadas na árvore *double broom*, de maneira a maximizar a conectividade algébrica. Efetuamos alterações no algoritmo de força bruta para identificar o melhor conjunto de duas arestas a ser inserido no grafo. Tanto HP quanto HE escolhem as duas arestas a serem adicionadas iterativamente, e calculamos a conectividade algébrica do grafo resultante em cada caso. Indicamos os conjuntos de arestas selecionadas por HP e HE como E_{HP} e E_{HE} , respectivamente. Efetuamos experimentos com árvores *double broom* de diâmetro 3 e 4, onde $d + 1 \le n \le 20$. Para alguns grafos de diâmetro 3, não foi possível adicionar a segunda aresta através do algoritmo de HE, pois estes não possuíam vértices com os critérios necessários.

Com relação às árvores double broom de diâmetro 3, dos 81 casos avaliados, 17 não atendiam a todos os critérios necessários para a inclusão da segunda aresta por parte da heurística de excentricidade. Das árvores restantes, em 2 delas a HP obteve melhor resultado, e em 62 a HE obteve melhor resultado (cerca de 76% dos casos). Já para às árvores double broom de diâmetro 4, em quase todos os casos a HE obteve melhor resultado (68 de 72 grafos, ou seja 94% dos casos). Os resultados obtidos para árvores double broom para d = 3 e d = 4, e $6 \le n \le 15$, onde t = 2 podem ser observados nas Tabelas 4.4 e 4.5. Os resultados completos, bem como os conjuntos de duas arestas determinados pela HP, HE e por FB para d = 3 podem ser visualizados no Apêndice 8.1.

d	n	k	l	G	$\lambda_2(G)$	e _{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
20	22	1	2	T(22 20 1)	0.0205	(1.21)	0.0804	(1.20)	0.0801	(3, 20)	0.0825
20	22	1	3	T(22, 20, 1) T(23, 20, 1)	0.0200	(1, 21) (1, 21)	0.0735	(1, 20)	0.0737	(3, 20)	0.0781
20	23	2	2	T(23, 20, 2)	0.0188	(1, 21) (1, 22)	0.0767	(1, 20) (1, 21)	0.0765	(3, 23)	0.0767
20	20	1	4	T(20, 20, 2) T(24, 20, 1)	0.0177	(1, 22) (1, 21)	0.0678	(1, 21) (1, 20)	0.0686	(0, 21) (4, 20)	0.0749
20	24	2	3	T(24, 20, 1) T(24, 20, 2)	0.0174	(1, 21) (1, 22)	0.0716	(1, 20) (1, 21)	0.0713	(3, 23)	0.0725
20	25	1	5	T(25, 20, 1)	0.0166	(1, 22) (1, 21)	0.0632	(1, 21) (1, 20)	0.0643	(4, 25)	0.0726
20	25	2	4	T(25, 20, 1) T(25, 20, 2)	0.0163	(1, 21) (1, 22)	0.0667	(1, 20) (1, 21)	0.0668	(4, 20) (4, 21)	0.0696
20	25	3	3	T(25, 20, 2) T(25, 20, 3)	0.0162	(1, 22) (1, 23)	0.0686	(1, 21) (1, 22)	0.0685	(3, 21)	0.0686
20	26	1	6	T(26, 20, 0) T(26, 20, 1)	0.0158	(1, 20)	0.0593	(1, 22) (1, 20)	0.0607	(3, 23) (4, 22)	0.0703
20	26	2	5	T(26, 20, 2)	0.0154	(1, 21) (1, 22)	0.0625	(1, 20) (1, 21)	0.0631	(4, 23)	0.0672
20	26	3	4	T(26, 20, 3)	0.0151	(1, 23)	0.0651	(1, 22)	0.0649	(4, 23)	0.0656
20	27	1	7	T(27, 20, 1)	0.015	(1, 21)	0.0561	(1, 20)	0.0578	(5, 20)	0.0692
20	27	2	6	T(27, 20, 2)	0.0145	(1, 22)	0.0589	(1, 21)	0.0599	(5, 21)	0.0655
20	27	3	5	T(27, 20, 3)	0.0143	(1, 23)	0.0616	(1, 22)	0.0617	(5, 22)	0.0635
20	27	4	4	T(27, 20, 4)	0.0142	(1, 24)	0.0629	(1, 23)	0.0628	(1, 26)	0.0629
20	28	1	8	T(28, 20, 1)	0.0144	(1, 21)	0.0534	(1, 20)	0.0552	(5, 20)	0.0682
20	28	2	7	T(28, 20, 2)	0.0139	(1, 22)	0.0559	(1, 21)	0.0571	(5, 21)	0.0643
20	28	3	6	T(28, 20, 3)	0.0135	(1, 23)	0.0584	(1, 22)	0.0589	(5, 24)	0.0619
20	28	4	5	T(28, 20, 4)	0.0134	(1, 24)	0.0603	(1, 23)	0.0602	(5, 26)	0.0607
20	29	1	9	T(29, 20, 1)	0,0138	(1, 21)	0,051	(1, 20)	0,053	(5, 27)	0,0673
20	29	2	8	T(29, 20, 2)	0,0133	(1, 22)	0,0532	(1, 21)	0,0547	(5, 24)	0,0631
20	29	3	7	T(29, 20, 3)	0,0129	(1, 23)	0,0556	(1, 22)	0,0564	(5, 24)	0,0603
20	29	4	6	T(29, 20, 4)	0,0127	(1, 24)	0,0577	(1, 23)	0,0578	(6, 23)	0,059
20	29	5	5	T(29, 20, 5)	0,0126	(1, 25)	0,0587	(1, 24)	0,0586	(4, 27)	0,0587
20	30	1	10	T(30, 20, 1)	0,0133	(1, 21)	0,049	(1, 20)	0,0511	(5, 20)	0,0662
20	30	2	9	T(30, 20, 2)	0,0128	(1, 22)	0,051	(1, 21)	0,0527	(5, 21)	0,0618
20	30	3	8	T(30, 20, 3)	0,0124	(1, 23)	0,0531	(1, 22)	0,0542	(6, 22)	0,0592
20	30	4	7	T(30, 20, 4)	0,0121	(1, 24)	0,0552	(1, 23)	0,0556	(6, 23)	0,0578
20	30	5	6	T(30, 20, 5)	0,012	(1, 25)	0,0567	(1, 24)	0,0566	(6, 26)	0,057
20	31	1	11	T(31, 20, 1)	0,0129	(1, 21)	0,0473	(1, 20)	0,0495	(5, 20)	0,0652
20	31	2	10	T(31, 20, 2)	0,0123	(1, 22)	0,049	(1, 21)	0,0509	(6, 21)	0,0609
20	31	3	9	T(31, 20, 3)	0,0119	(1, 23)	0,0509	(1, 22)	0,0523	(6, 22)	0,0585
20	31	4	8	T(31, 20, 4)	0,0116	(1, 24)	0,0528	(1, 23)	0,0536	(6, 24)	0,0567
20	31	5	7	T(31, 20, 5)	0,0114	(1, 25)	0,0546	(1, 24)	0,0547	(7, 24)	0,0554
20	31	6	6	T(31, 20, 6)	0,0114	(1, 26)	0,0554	(1, 25)	0,0553	(4, 31)	0,0554
20	32	1	12	T(32, 20, 1)	0,0125	(1, 21)	0,0457	(1, 20)	0,048	(5, 20)	0,0642
20	32	2	11	T(32, 20, 2)	0,0119	(1, 22)	0,0473	(1, 21)	0,0493	(6, 21)	0,0605
20	32	3	10	T(32, 20, 3)	0,0115	(1, 23)	0,0489	(1, 22)	0,0506	(6, 22)	0,0578
20	32	4	9	T(32, 20, 4)	0,0111	(1, 24)	0,0508	(1, 23)	0,0518	(6, 30)	0,0556
20	32	5	8	$T(32, 20, \overline{5})$	0,0109	(1, 25)	0,0525	(1, 24)	0,053	(7, 24)	0,0546
20	32	6	7	$T(32, 20, \overline{6})$	0,0108	(1, 26)	0,0538	(1, 25)	0,0537	(7, 29)	0,054
20	33	1	13	T(33, 20, 1)	0,0122	(1, 21)	0,0444	(1, 20)	0,0467	(6, 20)	0,0638
20	33	2	12	T(33, 20, 2)	0,0116	(1, 22)	0,0457	(1, 21)	0,0478	(6, 21)	0,0602
20	33	3	11	T(33, 20, 3)	0,0111	(1, 23)	0,0472	(1, 22)	0,049	(6, 31)	0,0572
20	33	4	10	T(33, 20, 4)	0,0108	(1, 24)	0,0489	(1, 23)	0,0502	(7, 23)	0,0546
20	33	5	9	T(33, 20, 5)	0,0105	(1, 25)	0,0506	(1, 24)	0,0513	(7, 24)	0,0538
20	33	6	8	T(33, 20, 6)	0,0104	(1, 26)	0,0521	(1, 25)	0,0522	(7, 31)	0,0527
20	33	7	7	T(33, 20, 7)	0,0103	(1, 27)	0,0528	(1, 26)	0,0527	(7, 30)	0,0528
20	34	1	14	T(34, 20, 1)	0,0119	(1, 21)	0,0431	(1, 20)	0,0455	(6, 20)	0,0637
20	34	2	13	1(34, 20, 2)	0,0113	(1, 22)	0,0444	(1, 21)	0,0466	(6, 21)	0,0598
20	34	3	12	1(34, 20, 3)	0,0108	(1, 23)	0,0457	(1, 22)	0,0477	(6, 22)	0,0564
20	34	4	10	1(34, 20, 4)	0,0104	(1, 24)	0,0472	(1, 23)	0,0488	(7, 23)	0,0542
20	34	0	10	1(34, 20, 5)	0,0101	(1, 25)	0,0488	(1, 24)	0,0499	(1, 25)	0,0510
20	34	7	9	T(34, 20, 0)	0,01	(1, 20)	0,0304	(1, 20)	0,0508	(0, 20)	0,0019
20	- 34	(ð	1(34, 20, 7)	0,0099	(1, 2i)	0,0515	(1, 20)	0,0515	(8, 28)	0,0517

TAB. 4.1: Resultados para árvores $double\ broom$ onded=20e $22\leq n\leq 34$ inserindo uma aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{HE}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
20	35	1	15	T(35, 20, 1)	0,0116	(1, 21)	0,042	(1, 20)	0,0444	(6, 20)	0,0635
20	35	2	14	T(35, 20, 2)	0,011	(1, 22)	0,0431	(1, 21)	0,0454	(6, 21)	0,0594
20	35	3	13	T(35, 20, 3)	0,0105	(1, 23)	0,0444	(1, 22)	0,0464	(6, 22)	0,0558
20	35	4	12	T(35, 20, 4)	0,0101	(1, 24)	0,0457	(1, 23)	0,0475	(7, 23)	0,0538
20	35	5	11	T(35, 20, 5)	0,0098	(1, 25)	0,0472	(1, 24)	0,0485	(7, 28)	0,0522
20	35	6	10	T(35, 20, 6)	0,0096	(1, 26)	0,0487	(1, 25)	0,0495	(8, 25)	0,0514
20	35	7	9	T(35, 20, 7)	0,0095	(1, 27)	0,0501	(1, 26)	0,0502	(8, 34)	0,0506
20	35	8	8	T(35, 20, 8)	0,0095	(1, 28)	0,0507	(1, 27)	0,0506	(8, 31)	0,0507
20	36	1	16	T(36, 20, 1)	0,0114	(1, 21)	0,0411	(1, 20)	0,0435	(6, 20)	0,0634
20	36	2	15	T(36, 20, 2)	0,0107	(1, 22)	0,042	(1, 21)	0,0444	(6, 21)	0,059
20	36	3	14	T(36, 20, 3)	0,0102	(1, 23)	0,0431	(1, 22)	0,0453	(6, 22)	0,0551
20	36	4	13	T(36, 20, 4)	0,0098	(1, 24)	0,0444	(1, 23)	0,0463	(7, 23)	0,0535
20	36	5	12	T(36, 20, 5)	0,0095	(1, 25)	0,0457	(1, 24)	0,0473	(7, 24)	0,0515
20	36	6	11	T(36, 20, 6)	0,0093	(1, 26)	0,0471	(1, 25)	0,0482	(8, 25)	0,0508
20	36	7	10	T(36, 20, 7)	0,0091	(1, 27)	0,0486	(1, 26)	0,049	(9, 26)	0,0497
20	36	8	9	T(36, 20, 8)	0,0091	(1, 28)	0,0496	(1, 27)	0,0496	(9, 31)	0,0498
20	37	1	17	T(37, 20, 1)	0,0112	(1, 21)	0,0402	(1, 20)	0,0426	(6, 20)	0,0632
20	37	2	16	T(37, 20, 2)	0,0105	(1, 22)	0,0411	(1, 21)	0,0434	(6, 21)	0,0586
20	37	3	15	T(37, 20, 3)	0,01	(1, 23)	0,042	(1, 22)	0,0443	(6, 22)	0,0544
20	37	4	14	T(37, 20, 4)	0,0096	(1, 24)	0,0431	(1, 23)	0,0452	(7, 23)	0,0531
20	37	5	13	T(37, 20, 5)	0,0092	(1, 25)	0,0444	(1, 24)	0,0462	(7, 24)	0,0508
20	37	6	12	T(37, 20, 6)	0,009	(1, 26)	0,0457	(1, 25)	0,0471	(8, 28)	0,0502
20	37	7	11	T(37, 20, 7)	0,0088	(1, 27)	0,0471	(1, 26)	0,0479	(9, 26)	0,0493
20	37	8	10	T(37, 20, 8)	0,0087	(1, 28)	0,0483	(1, 27)	0,0485	(9, 29)	0,0489
20	37	9	9	T(20, 37, 9)	0,0087	(1, 29)	0,0489	(1, 28)	0,0489	(4, 37)	0,0489
20	38	1	18	T(38, 20, 1)	0,011	(1, 21)	0,0394	(1, 20)	0,0418	(6, 20)	0,063
20	38	2	17	T(38, 20, 2)	0,0103	(1, 22)	0,0402	(1, 21)	0,0426	(6, 21)	0,0581
20	38	3	16	1(38, 20, 3)	0,0098	(1, 23)	0,041	(1, 22)	0,0434	(7, 22)	0,0543
20	38	4	15	1(38, 20, 4)	0,0093	(1, 24)	0,042	(1, 23)	0,0443	(7, 29)	0,0527
20	38	0	14	T(38, 20, 5)	0,009	(1, 25)	0,0431	(1, 24)	0,0451	(8, 24)	0,0505
20	30	7	13	T(38, 20, 0) T(28, 20, 7)	0,0088	(1, 20)	0,0444	(1, 23)	0,040	(0, 31)	0,0497
20	30	0	12	T(38, 20, 7)	0,0085	(1, 27)	0,0457	(1, 20)	0,0408	(9, 20)	0,0489
20	38	0	10	T(38, 20, 8) T(38, 20, 9)	0,0083	(1, 28)	0,047	(1, 27) (1, 28)	0,0475	(9, 21) (10, 36)	0,0482
20	30	1	10	T(30, 20, 3) T(30, 20, 1)	0.0108	(1, 23) (1, 21)	0,048	(1, 20)	0,040	(10, 30)	0.0628
20	39	2	13	T(39, 20, 1) T(39, 20, 2)	0,0103	(1, 21) (1, 22)	0,0393	(1, 20)	0.0418	(0, 20) (6, 21)	0.0576
20	39	3	17	T(39, 20, 2) T(39, 20, 3)	0.0096	(1, 22) (1, 23)	0.0401	(1, 21) (1, 22)	0.0426	(0, 21) (7 22)	0.0542
20	39	4	16	T(39, 20, 4)	0.0091	(1, 20) (1, 24)	0.041	(1, 22) (1, 23)	0.0434	(7, 22)	0.0523
20	39	5	15	T(39, 20, 5)	0.0088	(1, 25)	0.042	(1, 24)	0.0442	(8, 24)	0.0503
20	39	6	14	T(39, 20, 6)	0.0085	(1, 26)	0.0431	(1, 25)	0.045	(8, 25)	0.0491
20	39	7	13	T(39, 20, 7)	0,0083	(1, 27)	0,0444	(1, 26)	0,0458	(9, 26)	0,0485
20	39	8	12	T(39, 20, 8)	0.0082	(1, 28)	0.0456	(1, 27)	0.0465	(10, 27)	0.0475
20	39	9	11	T(39, 20, 9)	0,0081	(1, 29)	0,0469	(1, 28)	0,0471	(10, 38)	0,0474
20	39	10	10	T(39, 20, 10)	0,0081	(1, 30)	0,0474	(1, 29)	0,0474	(3, 39)	0,0474
20	40	1	20	T(40, 20, 1)	0,0106	(1, 21)	0,0379	(1, 20)	0,0404	(6, 20)	0,0626
20	40	2	19	T(40, 20, 2)	0,0099	(1, 22)	0,0386	(1, 21)	0,0411	(6, 21)	0,0572
20	40	3	18	T(40, 20, 3)	0,0094	(1, 23)	0,0393	(1, 22)	0,0418	(7, 22)	0,0541
20	40	4	17	T(40, 20, 4)	0,009	(1, 24)	0,0401	(1, 23)	0,0425	(7, 23)	0,0519
20	40	5	16	T(40, 20, 5)	0,0086	(1, 25)	0,041	(1, 24)	0,0433	(8, 24)	0,0502
20	40	6	15	T(40, 20, 6)	0,0083	(1, 26)	0,042	(1, 25)	0,0441	(8, 25)	0,0486
20	40	7	14	T(40, 20, 7)	0,0081	(1, 27)	0,0431	(1, 26)	0,0449	$(\overline{9, 39})$	0,0481
20	40	8	13	T(40, 20, 8)	0,008	(1, 28)	0,0444	(1, 27)	0,0456	(10, 27)	0,0472
20	40	9	12	T(40, 20, 9)	0,0079	(1, 29)	0,0456	(1, 28)	0,0462	(10, 28)	0,0467
20	40	10	11	T(40, 20, 10)	0,0078	(1, 30)	0,0466	(1, 29)	0,0467	(11, 36)	0,0468

TAB. 4.2: Resultados para árvores $double\ broom$ onded=20e $35\leq n\leq 40$ inserindo uma aresta (t=1)

	<i>a</i>					
d	Gratos Avaliados	HP melhor λ_2	HE melhor λ_2	Empate	λ_2 Máximo	Intervalo
3	80	2	78	0	80	
4	71	1	70	0	15	
5	63	0	63	0	14	
6	55	0	55	0	0	1
7	48	0	48	0	0	
8	41	0	41	0	0	$d \perp 2 \leq n \leq 20$
9	35	1	34	0	0	$a+2 \leq n \leq 20$
10	29	1	28	0	0	
11	24	1	23	0	0	1
12	19	2	17	0	0	
13	15	2	12	1	1	
14	11	3	7	1	0	
20	55	12	42	1	0	$d+2 \le n \le 30$
30	29	2	15	12	4	$d+2 \le n \le 40$

TAB. 4.3: Resultados gerais comparativos entre HP e HE em árvores double broom inserindo uma aresta $\left(t=1\right)$

d	n	k	1	G	$\lambda_2(G)$	$\lambda_2(G + E_{FB})$	$\lambda_2(G + E_{HP})$	$\lambda_2(G + E_{HE})$	Melhor Heur.
3	6	2	2	T(6, 3, 2)	0,4384	1	1	1	IGUAIS
3	7	2	3	T(7, 3, 2)	0,3983	1	0,8458	1	HE
3	8	2	4	T(8, 3, 2)	0,3738	1	0,7715	1	HE
3	8	3	3	T(8, 3, 3)	0,3542	0,7076	0,7076	0,6692	HP
3	9	2	5	T(9, 3, 2)	0,3572	1	0,726	1	HE
3	9	3	4	T(9, 3, 3)	0,3272	0,6465	0,6368	0,6465	HE
3	10	2	6	T(10, 3, 2)	0,3451	1	0,6948	1	HE
3	10	3	5	T(10, 3, 3)	0,3087	0,6303	0,5924	0,6303	HE
3	10	4	4	T(10, 3, 4)	0,2984	0,5663	0,5663	0,5557	HP
3	11	2	7	T(11, 3, 2)	0,3359	1	0,6719	1	HE
3	11	3	6	T(11, 3, 3)	0,2953	0,618	0,5615	0,618	HE
3	11	4	5	T(11, 3, 4)	0,2788	0,5351	0,5216	0,5351	HE
3	12	2	8	T(12, 3, 2)	0,3287	1	0,6544	1	HE
3	12	3	7	T(12, 3, 3)	0,2851	0,6084	0,5388	0,6084	HE
3	12	4	6	T(12, 3, 4)	0,2645	0,5194	0,4904	0,5194	HE
3	12	5	5	T(12, 3, 5)	0,2583	0,4803	0,4765	0,4803	HE
3	13	2	9	T(13, 3, 2)	0,3229	1	0,6406	1	HE
3	13	3	8	T(13, 3, 3)	0,2771	0,6006	0,5212	0,6006	HE
3	13	4	7	T(13, 3, 4)	0,2536	0,5071	0,4673	0,5071	HE
3	13	5	6	T(13, 3, 5)	0,2434	0,4627	0,4449	0,4627	HE
3	14	2	10	T(14, 3, 2)	0,3181	1	0,6293	1	HE
3	14	3	9	T(14, 3, 3)	0,2706	0,5942	0,5072	0,5942	HE
3	14	4	8	T(14, 3, 4)	0,245	0,4972	0,4494	0,4972	HE
3	14	5	7	T(14, 3, 5)	0,232	0,4488	0,4214	0,4488	HE
3	14	6	6	T(14, 3, 6)	0,228	0,4248	0,413	0,4248	HE
3	15	2	11	T(15, 3, 2)	0,3141	1	0,62	1	HE
3	15	3	10	T(15, 3, 3)	0,2652	0,5889	0,4958	0,5889	HE
3	15	4	9	T(15, 3, 4)	0,2381	0,4891	0,4351	0,4891	HE
3	15	5	8	T(15, 3, 5)	0,223	0,4376	0,4032	0,4376	HE
3	15	6	7	T(15, 3, 6)	0,2162	0,4098	0,3892	0,4098	HE

TAB. 4.4: Resultados para árvores double broom onde $d=3,\,6\leq n\leq 15,$ inserindo conjuntos de duas arestas (t=2)

d	n	k	1	G	$\lambda_2(G)$	$\lambda_2(G + E_{FB})$	$\lambda_2(G + E_{HP})$	$\lambda_2(G + E_{HE})$	Melhor Heur.
4	5	1	1	T(5, 4, 1)	0,382	2	1,382	1	HP
4	6	1	2	T(6, 4, 1)	0,3249	1,2679	1,2679	1	HP
4	7	1	3	T(7, 4, 1)	0,2955	1	0,8214	1	HE
4	7	2	2	T(7, 4, 2)	0,2679	1	1	0,8674	HP
4	8	1	4	T(8, 4, 1)	0,2774	1	0,7438	1	HE
4	8	2	3	T(8, 4, 2)	0,2384	0,8377	0,7639	0,8377	HE
4	9	1	5	T(9, 4, 1)	0,265	1	0,6972	1	HE
4	9	2	4	T(9, 4, 2)	0,2201	0,817	0,6711	0,817	HE
4	9	3	3	T(9, 4, 3)	0,2087	0,6086	0,6086	0,5872	HP
4	10	1	6	T(10, 4, 1)	0,256	1	0,6657	1	HE
4	10	2	5	T(10, 4, 2)	0,2076	0,8017	0,6168	0,8017	HE
4	10	3	4	T(10, 4, 3)	0,1902	0,5601	0,5344	0,5601	HE
4	11	1	7	T(11, 4, 1)	0,2492	1	0,6428	1	HE
4	11	2	6	T(11, 4, 2)	0,1984	0,79	0,5804	0,79	HE
4	11	3	5	T(11, 4, 3)	0,1775	0,5404	0,4887	0,5404	HE
4	11	4	4	T(11, 4, 4)	0,1716	0,5075	0,4659	0,4758	HE
4	12	1	8	T(12, 4, 1)	0,2438	1	0,6253	1	HE
4	12	2	7	T(12, 4, 2)	0,1915	0,7806	0,5541	0,7806	HE
4	12	3	6	T(12, 4, 3)	0,1683	0,5255	0,4574	0,5255	HE
4	12	4	5	T(12, 4, 4)	0,1588	0,4803	0,4232	0,4542	HE
4	13	1	9	T(13, 4, 1)	0,2394	1	0,6115	1	HE
4	13	2	8	T(13, 4, 2)	0,186	0,7729	0,534	0,7729	HE
4	13	3	7	T(13, 4, 3)	0,1612	0,5137	0,4344	0,5137	HE
4	13	4	6	T(13, 4, 4)	0,1494	0,4627	0,3936	0,4377	HE
4	13	5	5	T(13, 4, 5)	0,1459	0,4438	0,382	0,4043	HE
4	14	1	10	T(14, 4, 1)	0,2358	1	0,6003	1	HE
4	14	2	9	T(14, 4, 2)	0,1815	0,7666	0,5183	0,7666	HE
4	14	3	8	T(14, 4, 3)	0,1556	0,5041	0,4168	0,5041	HE
4	14	4	7	T(14, 4, 4)	0,1423	0,4488	0,3718	0,4248	HE
4	14	5	6	T(14, 4, 5)	0,1365	0,4248	0,3533	0,3869	HE
4	15	1	11	T(15, 4, 1)	0,2328	1	0,591	1	HE
4	15	2	10	T(15, 4, 2)	0,1779	0,7612	0,5055	0,7612	HE
4	15	3	9	T(15, 4, 3)	0,1511	0,4962	0,4028	0,4962	HE
4	15	4	8	T(15, 4, 4)	0,1367	0,4376	0,355	0,4143	HE
4	15	5	7	T(15, 4, 5)	0,1293	0,4098	0,3321	0,3733	HE
4	15	6	6	T(15, 4, 6)	0,127	0,3974	0,3251	0,3529	HE

TAB. 4.5: Resultados para árvores double broom onde $d=4,\,6\leq n\leq 15,$ inserindo conjuntos de duas arestas (t=2)

4.3 EXPERIMENTOS EM ÁRVORES BROOM

Observamos que, nos testes realizados nas *double broom*, as árvores nas quais a diferença entre o número de folhas nas duas extremidades era mais alta favoreciam um desempenho melhor por parte da HE. Com base nesta observação, passamos a considerar a família das árvores *broom*.

Cada um dos vértices de cada árvore foi rotulado de seguinte maneira: começando pelos vértices no caminho P_{d-1} , sequencialmente, e continuando pelas n - k - d + 1 folhas, conforme ilustra a Figura 4.3.

FIG. 4.2: Árvore *broom* com vértices rotulados de 1 a n

Efetuamos diferentes testes incluindo apenas uma única aresta, t = 1, nas árvores broom de diâmetro $3 \le d \le 100$ e $d = \lceil \frac{n}{2} \rceil$, ou seja, com número de folhas aproximadamente igual à metade dos vértices.

Em todos os 196 casos analisados, a aresta e_{HE} produziu aumento maior da conectividade algébrica (180 grafos) ou igual ao proporcionado pela aresta e_{HP} (16 grafos, considerando-se a precisão de 4 casas decimais utilizada).

A Tabela 4.6 apresenta os resultados obtidos pela HE e HP com t = 1 para árvores broom com número de vértices n entre 5 e 80, e diâmetro $d = \lceil \frac{n}{2} \rceil$. Além disso, pode ser observado que, com exceção dos grafos T(61, 31, 1) e T(76, 38, 1), em todos os casos, a aresta e_{HE} tem um vértice em comum com a aresta e_{FB} : o vértice de grau máximo, um dos critérios considerados pela HE.

Conforme pode ser observado, para alguns valores particulares de $d = \lceil \frac{n}{2} \rceil$, a aresta obtida pelo algoritmo de força bruta é diferente da obtida pela HE. Os grafos correspondentes a estes valores, para $d = \lceil \frac{n}{2} \rceil$, $5 \le n \le 100$, são descritos na Tabela 4.6. Porém, nesses casos observamos que a aresta e_{HE} produz o segundo maior aumento possível, considerando precisão de até 14 casas decimais.

Os resultados correspondentes a todos os grafos avaliados, com relação à melhor aresta e à conectividade algébrica resultante da inclusão da mesma são apresentados no Apêndice 8.2.

Efetuamos também testes inserindo duas arestas (t = 2) em árvores broom, onde

 $4 \leq d \leq 20$, e $5 \leq n \leq 20$. De todos os 136 casos avaliados, em 132 a HE obteve um aumento da conectividade algébrica maior que a HP, e em apenas 4 casos o incremento proporcionado por E_{HE} foi menor.

Motivados pelos resultados encontrados, procuramos analisar a relação entre o aumento do número isoperimétrico e da conectividade algébrica nas árvores *broom*.

Para tal fim efetuamos, neste caso, testes em árvores *broom* de diâmetro $4 \le d \le 14$, onde o número de vértices era $d+1 \le n \le 15$. Identificamos os vértices característicos destas árvores, ressaltamos os valores característicos de cada um dos vértices, e também um conjunto de arestas E_{is} que maximizava o número isoperimétrico ao serem adicionadas ao grafo. Também particionamos os vértices da árvore de acordo com este parâmetro: identificamos o conjunto $X \subset V$ de vértices que poderia ser escolhido para o particionamento de forma a maximizar o número isoperimétrico (conforme equação 3.1).

Dos resultados obtidos, identificamos que para 30 das 66 árvores consideradas, a aresta característica incidia nas duas partições $X e X^C$, conforme o número isoperimétrico. Semelhantemente, em todos os casos analisados, a aresta que maximizava a conectividade algébrica também incidia em vértices de diferentes positividades com relação aos seus valores característicos.

Uma observação importante com relação aos experimentos realizados com árvores broom é a seguinte: para todos os casos analisados, a aresta que, ao ser inserida na árvore maximiza a conectividade algébrica, é também uma aresta que maximiza o número isoperimétrico. Da equação 3.1 sabemos que, para qualquer grafo, o número isoperimétrico está limitado inferiormente pela conectividade algébrica. Porém, no caso particular das árvores broom, observamos nos casos avaliados que a mesma aresta maximiza ambos os parâmetros ao ser adicionada.

A Figura 4.4 apresenta 4 árvores broom, $T(8, 4, 1), T(10, 5, 1), T(6, 4, 1) \in T(15, 12, 1)$, para os quais foram gerados os resultados. As arestas na cor preta são as arestas existentes na árvore original. Os valores dentro dos vértices correspondem aos valores característicos dos mesmos. Os vértices na cor verde e roxo representam os vértices pertencentes a Xe X^C , respectivamente. As arestas que podem ser adicionadas aos grafos de modo a maximizar o número isoperimétrico estão representadas em azul, e as que podem ser inseridas de modo a maximizar a conectividade algébrica, as quais, em nossos testes, também maximizaram o número isoperimétrico, estão representadas em roxo.

d	31	38	49	56	60	67	67	74	78	81	85	85	92	92	99
n	61	76	98	112	119	133	134	148	155	162	169	170	183	184	198
k	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

TAB. 4.6: Árvores Broom T(n,d,k) para as quais e_{FB} não incide no vértice d, $d+1 \leq n \leq 200$

FIG. 4.3: Exemplo de grafos avaliados para comparação com número isoperimétrico

d	n	k	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{HE}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
3	5	1	T(5, 3, 1)	0.5188	(1, 4)	0.8299	(1, 3)	1	(1, 3)	1
3	6	1	T(6, 3, 1)	0.4859	(1, 4)	0.7639	(1,3)	1	(1,3)	1
4	7	1	T(7, 4, 1)	0.2955	(1, 5)	0.6086	(1, 4)	0.7269	(1,4)	0,7269
4	8	1	T(8, 4, 1)	0.2774	(1, 5)	0.5607	(1, 4)	0.7029	(1, 4)	0,7029
5	9	1	T(9, 5, 1)	0.1876	(1, 6)	0.4484	(1, 5)	0.53	(1, 5)	0,53
5	10	1	T(10, 5, 1)	0.1775	(1, 6)	0.4175	(1, 5)	0,5085	(1, 5)	0,5085
6	11	1	T(11, 6, 1)	0.1288	(1, 7)	0.3391	(1, 6)	0.3959	(2, 6)	0,4419
6	12	1	T(12, 6, 1)	0.1227	(1, 7)	0.319	(1, 6)	0.3799	(2, 6)	0,4249
7	13	1	T(13, 7, 1)	0.0936	(1, 8)	0.2636	(1, 7)	0.304	(2, 7)	0,3612
7	14	1	T(14, 7, 1)	0.0897	(1, 8)	0.25	(1,7)	0.2924	(2,7)	0,3474
8	15	1	T(15, 7, 1)	0.071	(1, 9)	0.21	(1, 8)	0.2394	(2, 8)	0,2878
8	16	1	T(16, 7, 1)	0.0683	(1, 9)	0.2005	(1, 8)	0.2309	(2, 8)	0,2777
9	17	1	T(17, 9, 1)	0.0556	(1, 10)	0.1709	(1, 9)	0.1928	(3, 9)	0,2449
9	18	1	T(18, 9, 1)	0.0538	(1, 10)	0.164	(1, 9)	0.1865	(3, 9)	0,2377
10	19	1	T(19, 10, 1)	0.0447	(1, 11)	0.1415	(1, 10)	0.1583	(3, 10)	0,2164
10	20	1	T(20, 10, 1)	0.0434	(1, 11)	0.1364	(1, 10)	0.1535	(3, 10)	0,2096
11	21	1	T(21, 11, 1)	0.0368	(1, 12)	0.119	(1, 11)	0.1321	(3, 11)	0,1803
11	22	1	T(22, 11, 1)	0.0357	(1, 12)	0.1151	(1, 11)	0.1284	(3, 11)	0,1753
12	23	1	T(23, 11, 1)	0.0307	(1, 13)	0.1014	(1, 12)	0.1118	(4, 12)	0,1526
12	24	1	T(24, 12, 1)	0.0299	(1, 13)	0.0984	(1, 12)	0.1089	(4, 12)	0,1501
13	20	1	T(25, 12, 1) T(26, 12, 1)	0.026	(1, 14)	0.0874	(1, 13)	0.0957	(4, 13)	0,1444
13	20	1	T(20, 13, 1) T(27, 12, 1)	0.0234	(1, 14) (1, 15)	0.085	(1, 13)	0.0934	(4, 13)	0,1400
14	21	1	T(27, 13, 1) T(28, 14, 1)	0.0224	(1, 15)	0.0701	(1, 14)	0.0829	(4, 14)	0,1223
15	20	1	T(20, 14, 1) T(20, 14, 1)	0.0213	(1, 15)	0.0742	(1, 14) (1, 15)	0.031	(4, 14) (4, 15)	0.1038
15	30	1	T(30, 15, 1)	0.019	(1, 10)	0.0652	(1, 15)	0.0709	(4, 15)	0.1019
16	31	1	T(31, 15, 1)	0.017	(1, 10)	0.0592	(1, 10)	0.0638	(5, 16)	0.0979
16	32	1	T(32, 16, 1)	0.0167	(1, 17)	0.0578	(1, 10) (1, 16)	0.0625	(5, 16)	0,0979
17	33	1	T(33, 16, 1)	0.015	(1, 18)	0.0527	(1, 17)	0.0567	(5, 17)	0.0865
17	34	1	T(34, 17, 1)	0.0147	(1, 18)	0.0516	(1, 17)	0.0556	(5, 17)	0.0856
18	35	1	T(35, 17, 1)	0.0134	(1, 19)	0.0473	(1, 18)	0.0506	(5, 18)	0,0753
18	36	1	T(36, 18, 1)	0.0131	(1, 19)	0.0463	(1, 18)	0.0497	(5, 18)	0,0744
19	37	1	T(37, 18, 1)	0.012	(1, 20)	0.0426	(1, 19)	0.0455	(6, 19)	0,0681
19	38	1	T(38, 19, 1)	0.0118	(1, 20)	0.0418	(1, 19)	0.0447	(6, 19)	0,0681
20	39	1	T(39, 20, 1)	0.0108	(1, 21)	0.0386	(1, 20)	0.0411	(6, 20)	0,0628
20	40	1	T(40, 20, 1)	0.0106	(1, 21)	0.0379	(1, 20)	0.0404	(6, 20)	0,0626
21	41	1	T(41, 21, 1)	0.0098	(1, 22)	0.0352	(1, 21)	0.0373	(6, 21)	0,0564
21	42	1	T(42, 21, 1)	0.0096	(1, 22)	0.0346	(1, 21)	0.0367	(6, 21)	0,056
22	43	1	T(43, 22, 1)	0.0089	(1, 23)	0.0321	(1, 22)	0.034	(6, 22)	0,0505
22	44	1	T(44, 22, 1)	0.0087	(1, 23)	0.0316	(1, 22)	0.0335	(7, 22)	0,0501
23	45	1	T(45, 23, 1)	0.0081	(1, 24)	0.0295	(1, 23)	0.0311	(7, 23)	0,0471
23	46	1	T(46, 23, 1)	0.008	(1, 24)	0.029	(1, 23)	0.0307	(7, 23)	0,0471
24	47	1	T(47, 23, 1)	0.0074	(1, 25)	0.0271	(1, 24)	0.0286	(7, 24)	0,0434
24	48	1	T(48, 24, 1)	0.0073	(1, 25)	0.0268	(1, 24)	0.0282	(7, 24)	0,0432
25	49	1	T(49, 25, 1) T(50, 25, 1)	0.0068	(1, 26)	0.0251	(1, 25)	0.0264	(7, 25)	0,0396
20	50	1	T(50, 25, 1) T(51, 26, 1)	0.0067	(1, 20)	0.0247	(1, 25)	0.020	(7, 23)	0,0393
20	52	1	T(51, 20, 1) T(52, 26, 1)	0.0003	(1, 27)	0.0232	(1, 20)	0.0244	(8, 20)	0,0305
20	53	1	T(52, 20, 1) T(53, 27, 1)	0.0002	(1, 27) (1, 28)	0.0229	(1, 20) (1, 27)	0.0241	(8, 20) (8, 27)	0,0303
27	54	1	T(54, 27, 1)	0.0058	(1, 20) (1, 28)	0.0213	(1, 27) (1, 27)	0.0220	(8, 27)	0.0341
28	55	1	T(55, 28, 1)	0.0054	(1, 29)	0.0201	(1, 28)	0.0211	(8, 28)	0.0317
28	56	1	T(56, 28, 1)	0.0054	(1, 29)	0.0199	(1, 28)	0.0208	(8, 28)	0,0316
29	57	1	T(57, 29, 1)	0.0051	(1, 30)	0.0188	(1, 29)	0.0196	(8,29)	0,0293
29	58	1	T(58, 29, 1)	0.005	(1, 30)	0.0186	(1, 29)	0.0194	(8, 29)	0,0291
30	59	1	T(59, 30, 1)	0.0047	(1, 31)	0.0176	(1, 30)	0.0183	(9, 30)	0,0275
30	60	1	T(60, 30, 1)	0.0047	(1, 31)	0.0174	(1, 30)	0.0181	(9, 30)	0,0275
31	61	1	T(61, 31, 1)	0.0044	(1, 32)	0.0165	(1, 31)	0.0172	(9, 59)	0,0258
31	62	1	T(62, 31, 1)	0.0044	(1, 32)	0.0163	(1, 31)	0.017	(9, 31)	0,0258
32	63	1	T(63, 32, 1)	0.0041	(1, 33)	0.0155	(1, 32)	0.0161	(9, 32)	0,0241
32	64	1	T(64, 32, 1)	0.0041	(1, 33)	0.0153	(1, 32)	0.016	(9,32)	0,0241
33	65	1	T(65, 33, 1)	0.0039	(1, 34)	0.0146	(1, 33)	0.0152	(10, 33)	0,0226
33	66	1	T(66, 33, 1)	0.0039	(1, 34)	0.0144	(1, 33)	0.015	(10, 33)	0,0226
34	67	1	T(67, 34, 1)	0.0037	(1, 35)	0.0138	(1, 34)	0.0143	(10, 34)	0,0214
34	60	1	1(08, 34, 1) T(60, 25, 1)	0.0036	(1, 35)	0.0130	(1, 34)	0.0142	(10, 34)	0,0214
35	09	1	1(09, 35, 1) T(70, 25, 1)	0.0035	(1, 36)	0.013	(1, 35)	0.0135	(10, 35)	0,0202
30	70	1	T(70, 30, 1) T(71, 26, 1)	0.0034	(1, 30) (1, 27)	0.0129	(1, 30) (1, 26)	0.0134	(10, 35) (10, 26)	0.0201
26	72	1	T(72, 26, 1)	0.0033	(1, 37)	0.0123	(1, 30) (1, 26)	0.0127	(10, 30) (10, 26)	0.0180
30	72	1	T(72, 30, 1) T(73, 37, 1)	0.0032	(1.38)	0.0122	(1, 30) (1, 37)	0.0120	(10, 30) (11, 37)	0.018
37	74	1	T(74, 37, 1)	0.0031	(1, 38)	0.0115	(1, 37) (1, 37)	0.012	(11, 37)	0.018
38	75	1	T(75, 38, 1)	0.0029	(1, 39)	0.0111	(1, 38)	0.0114	(11, 38)	0.0171
38	76	1	T(76, 38, 1)	0.0029	(1, 39)	0.011	(1, 38)	0.0113	(11.71)	0,0171
39	77	1	T(77, 39, 1)	0.0028	(1, 40)	0.0105	(1, 39)	0.0109	(11, 39)	0,0162
39	78	1	T(78, 39, 1)	0.0028	(1, 40)	0.0104	(1, 39)	0.0108	(11, 39)	0,0162
40	79	1	T(79, 40, 1)	0.0026	(1, 41)	0.01	(1, 40)	0.0103	(12, 40)	0,0154
40	80	1	T(80, 40, 1)	0.0026	(1, 41)	0.0099	(1, 40)	0.0102	(12, 40)	0,0153

TAB. 4.7: Resultados comparativos para árvores broom onde $d=\lceil\frac{n}{2}\rceil,\,5\leq n\leq 80,$ inserindo uma aresta (t=1)

4.4 EXPERIMENTOS REALIZADOS EM ÁRVORES *STARLIKE*

A segunda classe de grafos a ser analisada são as árvores *starlike*.

Em todos os nossos experimentos, investigamos starlikes do tipo S(p, ..., p), de vértice de grau máximo v_{Δ} , onde cada ramo P_{n_i} em v_{Δ} possui exatamente p vértices. Assim como nas árvores double broom e broom, efetuamos diferentes testes comparativos entre a HE e a HP, com o objetivo de verificar o aumento da conectividade algébrica proporcionado por cada uma delas. Em cada teste, foram identificados dois conjuntos, E_{HE} e E_{HP} , correspondentes às t arestas escolhidas respectivamente pela HE e HP, e avaliada a conectividade algébrica do grafo resultante da inserção das arestas de ambos os conjuntos. Executamos também um algoritmo de força bruta com o objetivo de identificar o conjunto E_{FB} contendo as t arestas que proporcionam o maior aumento possível.

Inicialmente, nossos experimentos se deram em starlikes S(p, ..., p), de grau máximo $\Delta = 3 \text{ e } \Delta = 4$, onde cada ramo possuía exatamente $2 \le n \le 9$ vértices. Verificamos que, para esses casos, nenhuma das heurísticas era capaz de identificar aresta que incrementasse o valor da conectividade algébrica. O algoritmo de força bruta demonstrou que de fato não havia aresta elegível para isso.

Com base nestes resultados, efetuamos novos testes como os anteriores, em *starlikes* de graus variados, incluindo de t = 1 a t = 4 arestas. A Tabela 4.8 demonstra os resultados do experimento para 40 grafos *starlike*, onde o grau máximo varia de $\Delta = 3$ a $\Delta = 7$, e o número de vértices nos ramos varia de 2 a 6.

Verificamos que, para estes grafos avaliados, adicionar qualquer valor de $t \leq \Delta - 2$ arestas não altera a conectividade algébrica. Além disso, também verificamos que para os mesmos grafos, o aumento do grau do vértice de grau máximo, através da inserção de novos ramos adjacentes não exerce qualquer alteração na conectividade algébrica. Estes resultados serviram de base para a construção do Teorema 5.2, descrito no capítulo seguinte.

Também observamos que em todos os casos onde houve aumento de $\lambda_2(G)$, todas as arestas do conjunto de arestas E_{FB} incidem em um mesmo vértice v, e em um vértice pertencente a um ramo de G que não contém o vértice v. Exceto com relação a este ramo, nenhum par de arestas incide em um mesmo caminho, nem no vértice de maior grau. Para este fato, não obtivemos justificativa teórica.

t	G	$ \Delta $	$\lambda_2(G)$	$\lambda_2(G + E_{FB})$	$\lambda_2(G + E_{HP})$	$\lambda_2(G + E_{HE})$	Melhor Heur.
1	T(2, 2, 2)	3	0,382	0,382	0,382	0,382	IGUAIS
1	T(3, 3, 3)	3	0,1981	0,1981	0,1981	0,1981	IGUAIS
1	T(4, 4, 4)	3	0,1206	0,1206	0,1206	0,1206	IGUAIS
1	T(5, 5, 5)	3	0,081	0,081	0,081	0,081	IGUAIS
1	T(6, 6, 6)	3	0,0581	0,0581	0,0581	0,0581	IGUAIS
1	T(7, 7, 7)	3	0,0437	0,0437	0,0437	0,0437	IGUAIS
1	T(8, 8, 8)	3	0,0341	0,0341	0,0341	0,0341	IGUAIS
1	T(9, 9, 9)	3	0,0273	0,0273	0,0273	0,0273	IGUAIS
1	T(2, 2, 2, 2)	4	0,382	0,382	0,382	0,382	IGUAIS
1	T(3, 3, 3, 3)	4	0,1981	0,1981	0,1981	0,1981	IGUAIS
1	T(4, 4, 4, 4)	4	0,1206	0,1206	0,1206	0,1206	IGUAIS
1	T(5, 5, 5, 5)	4	0,081	0,081	0,081	0,081	IGUAIS
1	T(6, 6, 6, 6)	4	0,0581	0,0581	0,0581	0,0581	IGUAIS
1	T(7, 7, 7, 7)	4	0,0437	0,0437	0,0437	0,0437	IGUAIS
1	T(8, 8, 8, 8)	4	0,0341	0,0341	0,0341	0,0341	IGUAIS
1	T(9, 9, 9, 9)	4	0,0273	0,0273	0,0273	0,0273	IGUAIS
2	T(2, 2, 2)	3	0,382	1	1	0,5858	HP
2	T(3, 3, 3)	3	0,1981	0,5858	0,5858	0,4679	HP
2	T(4, 4, 4)	3	0,1206	0,382	0,382	0,382	IGUAIS
2	T(5, 5, 5)	3	0,081	0,3035	0,2679	0,3035	HE
2	T(6, 6, 6)	3	0,0581	0,236	0,1981	0,2307	HE
2	T(2, 2, 2, 2)	4	0,382	0,382	0,382	0,382	IGUAIS
2	T(3, 3, 3, 3)	4	0,1981	0,1981	0,1981	0,1981	IGUAIS
2	T(4, 4, 4, 4)	4	0,1206	0,1206	0,1206	0,1206	IGUAIS
2	T(5, 5, 5, 5)	4	0,081	0,081	0,081	0,081	IGUAIS
2	T(6, 6, 6, 6)	4	0,0581	0,0581	0,0581	0,0581	IGUAIS
3	T(2, 2, 2)	3	0,382	1,5858	0,382	0,382	IGUAIS
3	T(3, 3, 3)	3	0,1981	1	0,1981	0,1981	IGUAIS
3	T(4, 4, 4)	3	0,1206	0,5587	0,1206	0,1206	IGUAIS
3	T(2, 2, 2, 2)	4	0,382	1	0,382	0,382	IGUAIS
3	T(3, 3, 3, 3)	4	0,1981	0,5858	0,1981	0,1981	IGUAIS
3	T(4, 4, 4, 4)	4	0,1206	0,382	0,1206	0,1206	IGUAIS
3	T(2, 2, 2, 2, 2)	5	0,382	0,382	0,382	0,382	IGUAIS
3	T(3, 3, 3, 3, 3)	5	0,1981	0,1981	0,1981	0,1981	IGUAIS
3	T(2, 2, 2, 2, 2, 2, 2)	6	0,382	0,382	0,382	0,382	IGUAIS
3	T(3, 3, 3, 3, 3, 3, 3)	6	0,1981	0,1981	0,1981	0,1981	IGUAIS
3	T(2, 2, 2, 2, 2, 2, 2, 2)	7	0,382	0,382	0,382	0,382	IGUAIS
3	T $(3, 3, 3, 3, 3, 3, 3, 3)$	7	0,1981	0,1981	0,1981	0,1981	IGUAIS
4	T(2, 2, 2, 2, 2, 2)	5	0,382	1	0,382	0,382	IGUAIS
4	T(2, 2, 2, 2, 2, 2, 2)	6	0,382	0,382	0,382	0,382	IGUAIS

TAB. 4.8: Experimentos comparativos em starlikes de vértice de grau máximo $3\leq\Delta\leq7,$ inserindo conjuntos de arestas de tamanho $1\leq t\leq4$

5 CONTRIBUIÇÃO TEÓRICA

Com base nos testes efetuados, e nos teoremas existentes relacionados à conectividade algébrica, passamos a investigar justificativas teóricas para alguns dos comportamentos observados durante os experimentos com relação à adição de arestas em grafos das classes estudadas. A partir de nosso estudo, apresentamos alguns resultados relacionados a classes específicas de grafos: *starlikes*, grafos que possuam vértices gêmeos, grafos aranha, *split* e bipartidos completos.

5.1 SOBRE AUMENTO DA CONECTIVIDADE ALGÉBRICA PARA ÁRVORES *STAR-LIKE*

Os próximos resultados servem como base para o Teorema 5.2 a seguir. Generalizamos o conceito de **ramo de perron para grafos em geral**, através da seguinte definição: seja G um grafo, e $v \in V(G)$. Sejam os componentes de G - v indicados por $C_1, ..., C_k$. Para cada componente, seja $L(C_i)$ a submatriz principal de L(G) correspondente aos vértices de C_i . O valor de perron de C_i é o valor de perron da matriz positiva $L(C_i)^{-1}$ (denominada a matriz bottleneck de G), e dizemos que C_j é um componente de perron em v se seu valor de perron é máximo entre os componentes $C_1, ..., C_k$.

Teorema 5.1. Kirkland e Fallat (1998) : Seja G um grafo. Caso B do Teorema 2.5 ocorre se e somente se existem dois ou mais componentes de Perron em z. Além disso, nesse caso, $\lambda_2(G) = \frac{1}{\rho(L(C)^{-1})}$, para qualquer componente de Perron C em z. Se $C_1, ..., C_n$ são os componentes de Perron em z, para $1 \le i \le m$, seja x_i o vetor de Perron de $L(C_i)^{-1}$, normalizado de forma que suas entradas somam 1. Para cada $2 \le i \le m$, seja b_{i-1} o vetor de Fiedler que valora os vértices de C_1 por x_1 , valora os vértices de C_i por $-x_i$ e valora os demais vértices por 0; então, $b_1, ..., b_{m-1}$ é uma base para o autoespaço correspondente a $\lambda_2(G)$. Em particular, se existem m componentes de Perron em z, então a multiplicidade de $\lambda_2(G)$ é m - 1, e cada vetor de Fiedler tem zeros nas posições correspondentes a z e aos vértices dos componentes em z que não são componentes de Perron. Finalmente, para qualquer vértice $v \neq z$, o único componente de Perron em v é o componente contendo z.

Tomemos como exemplo o grafo G', de vértices $V(G') = \{v_1, v_2, v_3, v_4\}$, ilustrado na Figura 2.8, de conectividade algébrica $\lambda_2(G') = 1$. Neste caso, o vértice $z = v_2$

é uma articulação, e a respectiva submatriz resultante da remoção da linha e coluna correspondente a v_2 em L = L(G') pode ser escrita como:

$$L_{v_2} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A matriz *bottleneck* de G' em v_2 corresponde a:

$$L_{v_2}^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & 0\\ \frac{1}{3} & \frac{2}{3} & 0\\ \hline 0 & 0 & 1 \end{bmatrix}$$

onde os blocos da matriz $L_{v_2}^{-1}$ correspondem às matrizes *bottleneck* dos componentes de v_2 em G'. Ao calcularmos o raio espectral de $L_{v_2}^{-1}$, bem como de cada bloco de $L_{v_2}^{-1}$, podemos verificar que:

$$\rho(L_{v_2})^{-1} = \rho\left(\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}\right) = \rho([1]) = 1 = \lambda_2(G')$$

Podemos obervar que existem nesse caso dois componentes de Perron em z. Além disso, o raio espectral das matrizes *bottleneck* associadas a estes componentes coincide com a conectividade algébrica de G'.

Seja S(p, p, ..., p) uma árvore *starlike* de grau máximo Δ e ordem $n = 1 + \Delta p$, e v_1 o vértice de grau máximo.

Proposição 5.1. A matriz *botlleneck* correspondente a *starlike* S(p, p, ..., p) obtida pela remoção da linha e coluna do vértice de grau máximo é uma matriz diagonal por blocos.

Demonstração. Seja x o vetor de dimensão n - 1 tal que o componente x_j possui valor -1 se o valor j - 1 é múltiplo de p e 0 caso contrário. Então, os vértices de S(p, p, ..., p)podem ser numerados de tal forma que a matriz Laplaciana correspondente L pode ser escrita como:

$$L = \begin{bmatrix} \Delta & x^T & \\ M & & \\ & M & \\ x & & \\ & & \\ & & M \end{bmatrix}_{n \times n}$$

onde as entradas da matriz M são definidas como:

$$M_{i,j} = \begin{cases} 2, & \text{se } i = j \neq p, \\ 1, & \text{se } i = j = p, \\ -1, & \text{se } |i-j| = 1, \\ 0, & \text{caso contrário} \end{cases}$$

Seja L_1 a submatriz obtida através da remoção da primeira linha e da primeira coluna de L. Então, L_1 é uma matriz diagonal em blocos, e cada bloco é representado pela matriz M. Como L_1 é invertível, a sua matriz inversa é:

$$L_1^{-1} = \begin{bmatrix} M^{-1} & & & \\ & M^{-1} & & \\ & & \dots & \\ & & & M^{-1} \end{bmatrix}_{n-1 \times n-1}$$

,

onde M^{-1} é a matriz inversa de M cujas entradas são $M_{i,j}^{-1} = min(i,j)$. Portanto L_1^{-1} é uma matriz diagonal por blocos.

Proposição 5.2. A starlike T = S(p, ..., p) é uma árvore de Tipo I, e possui Δ ramos de Perron.

Demonstração. Seja S(p, p, ..., p) uma árvore starlike, e v_1 o vértice de maior grau Δ . Então, pela Proposição 5.1, a matriz bottleneck de S(p, p, ..., p) em v_1 é uma matriz diagonal em blocos, e possui exatamente Δ blocos correspondentes aos Δ componentes conexos resultantes da remoção de v_1 da árvore. Uma vez que todos os componentes conexos de $S(p, p, ..., p) - v_1$ são isomorfos entre si, os valores de Perron associados a cada um deles deverão ser os mesmos, e portanto, existem necessariamente $\Delta \geq 3$ ramos de Perron em v_1 . Pelo Teorema 3.9, este fato só ocorre em árvores de Tipo I, e portanto, S(p, p, ..., p) é uma árvore de Tipo I onde v_1 é o vértice característico. **Proposição 5.3.** Seja G = (V, E) um grafo, e $m \ge 1$ a multiplicidade algébrica da conectividade algébrica em $\sigma(L(G))$. Seja $S \subseteq E^c$ um conjunto de arestas em G^c , tal que $|S| = k \le m - 1$. Então, o grafo $H = (V, E \cup S)$ possui a mesma conectividade algébrica de G, e a multiplicidade da conectividade algébrica de H não é menor que m - k.

Demonstração. A prova será realizada por indução em m.

Caso base: seja m = 1. Então, $S = \emptyset$, e o grafo $H = (V, E \cup S)$ possui a mesma conectividade algébrica de G (nenhuma aresta foi adicionada). Portanto, a multiplicidade da conectividade algébrica de H não é menor que m-k, e a proposição é válida para m = 1.

Passo indutivo: Suponha que exista um valor m para o qual a proposição é verdadeira. Iremos demonstrar que nesse caso, a proposição é verdadeira também para o valor m+1, ou seja, se G = (V, E) é um grafo qualquer, onde a multiplicidade da conectividade algébrica é m + 1, o grafo $I = (V, E \cup S)$ tal que $|S| = k \leq m$ possui a mesma conectividade algébrica de G.

Seja H o grafo resultante da inclusão de uma única aresta $e \in S$ em G. Então Gé subgrafo de H, e pelo Teorema 2.4, os autovalores de G se entrelaçam com os de H. Portanto, podemos afirmar que:

$$\lambda_2(G) \le \lambda_2(H) \le \lambda_3(G) \le \lambda_3(H) \le \dots$$

$$\le \lambda_{m+1}(G) \le \lambda_{m+1}(H) \le \lambda_{m+2}(G) \le \lambda_{m+2}(H) \le \dots \lambda_n(G) \le \lambda_n(H)$$
(5.1)

Porém, uma vez que m+1 é a multiplicidade da conectividade algébrica de G, então:

$$\lambda_2(G) = \lambda_3(G) = \dots = \lambda_{m+1}(G) = \lambda_{m+2}(G) \le \dots \lambda_n(G)$$
(5.2)

Portanto, através de 5.1 e 5.2, podemos afirmar que:

$$\lambda_2(G) = \lambda_2(H) = \lambda_3(G) = \lambda_3(H) = \dots$$
$$= \lambda_{m+1}(G) = \lambda_{m+1}(H) = \lambda_{m+2}(G) \le \lambda_{m+2}(H) \le \dots \lambda_n(G) \le \lambda_n(H)$$
(5.3)

E então H possui a mesma conectividade algébrica de G, com multiplicidade no mínimo m.

Além disso, uma vez que G é subgrafo de I, e $e \in S$, o grafo I pode ser obtido do grafo H através da inclusão de mais $k - 1 \leq m - 1$ arestas em H. Mas, pela hipótese de indução aplicada ao grafo H, podemos concluir que $\lambda_2(I) = \lambda_2(H) = \lambda_2(G)$, e que a multiplicidade da conectividade algébrica de I é no mínimo m - k. Portanto, a proposição é verdadeira para o valor m + 1.

Teorema 5.2. Seja S(p, p, ..., p) uma árvore starlike de grau máximo $\Delta \geq 3$. Então, adicionar $k \leq \Delta - 2$ arestas não altera a conectividade algébrica.

Demonstração. Seja v_1 o vértice de grau $\Delta \geq 3$ pertencente a S(p, p, ..., p). Conforme demonstrado na Proposição 5.2, S(p, p, ..., p) é uma árvore de tipo I, e sabemos então que existem necessariamente $\Delta \geq 3$ ramos de Perron em v_1 . Logo, pelo Teorema 5.1, a multiplicidade da conectividade algébrica de S(p, p, ..., p) é maior ou igual a $\Delta - 1$. Por fim, pela Proposição 5.3, podemos concluir que adicionar $k \leq \Delta - 2$ arestas em S(p, p, ..., p)não altera o valor da conectividade algébrica.

5.2 SOBRE AUMENTO DA CONECTIVIDADE ALGÉBRICA PARA GRAFOS COM VÉRTICES GÊMEOS

A seguir, são apresentados resultados relacionados a grafos cujo conjunto de vértices contém vértices gêmeos. Os resultados são correspondentes ao acréscimo de uma única aresta no grafo e sua relação com o valor da conectividade algébrica do grafo resultante.

Proposição 5.4. Seja G um grafo qualquer, e u e v vértices gêmeos, não adjacentes e tais que $grau(v_{k+1}) = grau(v_{k+2}) \neq \lambda_2(G)$. Então seus valores característicos são iguais.

Demonstração. Seja w um vetor de Fiedler, associado a G. Então, w é um vetor não nulo, e satisfaz a equação:

$$L(G)w = \lambda_2(G)w \tag{5.4}$$

Sejam $v_{k+1}, v_{k+2} \in V$, vértices gêmeos, não adjacentes em G. Sejam $N(v_{k+1}) = N(v_{k+2}) = \{v_1, v_2, ..., v_k\}$ suas respectivas vizinhanças.

Como $grau(v_{k+1}) = grau(v_{k+2}) \neq \lambda_2(G)$, a partir de 5.4, o produto da k + 1-ésima linha de L(G) pelo vetor w é:

$$w_{1} - \dots - w_{k} + grau(v_{k+1})w_{k+1} = \lambda_{2}(G)w_{k+1}$$

$$(grau(v_{k+1}) - \lambda_{2}(G))w_{k+1} = w_{1} + \dots + w_{k}$$

$$w_{k+1} = \frac{w_{1} + \dots + w_{k}}{grau(v_{k+1}) - \lambda_{2}(G)}$$
(5.5)

Analogamente, multiplicando a k + 2-ésima linha de L(G) por w temos:

$$-w_{1} - \dots - w_{k} + grau(v_{k+2})w_{k+2} = \lambda_{2}(G)w_{k+2}$$

$$(grau(v_{k+2}) - \lambda_{2}(G))w_{k+2} = w_{1} + \dots + w_{k}$$

$$w_{k+2} = \frac{w_{1} + \dots + w_{k}}{grau(v_{k+2}) - \lambda_{2}(G)}$$
(5.6)

Além disso, visto que $N(v_{k+1}) = N(v_{k+2})$, $v_{k+1} \in v_{k+2}$ possuem o mesmo grau, ou seja, $grau(v_{k+1}) = grau(v_{k+2})$. Assim, da equações 5.6 e 5.7, podemos concluir que $w_{k+1} = w_{k+2}$, e portanto, os valores característicos dos vértices gêmeos são iguais. \Box

Teorema 5.3. : Adicionar arestas entre dois vértices gêmeos não adjacentes u e vtais que grau $(u) = grau(v) \neq \lambda_2(G)$ não aumenta a conectividade algébrica.

Demonstração. Seja G = (V, E) um grafo de n vértices, e $u, v \in V$, vértices gêmeos não adjacentes em G e tais que $grau(u) = grau(v) \neq \lambda_2(G)$.

Por hipótese $N_G(u) = N_G(v)$, então pela Proposição 5.4 podemos concluir que u e v possuem valores característicos iguais; isto é, as entradas de qualquer vetor de Fiedler de G são iguais para esses vértices.

Demonstraremos que $\lambda_2(G \cup H) = \lambda_2(G)$ para o grafo H definido a seguir. Seja $\widetilde{H} = (V_{\widetilde{H}}, E_{\widetilde{H}})$ o subgrafo de G^c com 2 vértices, onde $V_{\widetilde{H}} = \{u, v\}$, e $E_{\widetilde{H}} = \{(u, v)\}$. E seja $H = \widetilde{H} + O_{n-2}$. Pelo Teorema 3.8 podemos concluir que $\lambda_2(G) = \lambda_2(G \cup H)$. Uma vez que $G \cup H = (V, E \cup \{(u, v)\})$, pode-se observar que adicionar a aresta (u, v) em G não altera a conectividade algébrica.

Proposição 5.5. : Seja G = (V, E) um grafo do tipo aranha (magra ou gorda), onde o conjunto R correspondente a cabeça da aranha forma um conjunto independente. Então, para $u, v \in R$, se $grau(u) \neq \lambda_2(G)$, adicionar a aresta (u, v) não aumenta a conectividade algébrica.

Observamos que se um grafo nas condições do Teorema 5.3 possui mais de um par de vértices gêmeos não adjacente, poderiam ser adicionadas mais arestas sem aumentar o valor da conectividade algébrica. Demonstração. Seja G = (V, E) um grafo do tipo aranha, e $S, C, R \subseteq V$ conjuntos correspondentes às pernas, corpo e cabeça de G. Sejam $u, v \in R$, e |R| = p. Então, por definição, existem todas as arestas entre os vértices u e v e os vértices de C, e nenhuma aresta entre os vértices de R e de S. Portanto, uma vez que R é um conjunto independente de vértices, u e v são vértices gêmeos em G. Logo, pelo Teorema 5.3, adicionar a aresta (u, v) não aumenta a conectividade algébrica.

Em grafos do tipo aranha, no caso em que o conjunto R correspondentente a cabeça da aranha forma um conjunto independente, o número de pares de vértices gêmeos é dado pela soma da combinação dois a dois dos elementos da cabeça R. Assim sendo, pela Proposição 5.5 pode-se concluir que existem $\frac{p!}{(p-2)!.2!}$ arestas as quais, quando incluídas isoladamente neste tipo de grafo aranha, não aumentam a conectividade algébrica.

Exemplo:

Seja G o grafo aranha com 13 vértices da Figura 2.6 (|S| = |C| = 5, |R| = 3). Temos que $\lambda_2(G) = 0,87680$ com multiplicidade 4. Os vértices do conjunto R são gêmeos com grau 5. Neste caso se verifica $\lambda_2(G) \neq grau(v_{k+1}) = grau(v_{k+2})$, onde v_{k+1} e v_{k+2} são dois vértices gêmeos não adjacentes em G. Os 4 vetores de Fiedler linearmente independentes verificam que os valores característicos dos vértices em R são iguais a zero. Então, pelo Teorema 5.3, adicionar qualquer aresta entre estes pares de vértices não aumenta o valor da conectividade algébrica.

Proposição 5.6. Seja $K_{p,q} = (V_p \cup V_q, E)$ um grafo bipartido completo, de ordem $n = p + q \operatorname{com} |V_p| = p, |V_q| = q, e p < q$. Então, para $u, v \in V_p$, adicionar a aresta (u, v) não aumenta a conectividade algébrica.

Demonstração. A demonstração é semelhante a apresentada para a proposição anterior. Seja $K_{p,q} = (V_p \cup V_q, E)$ um grafo bipartido completo, e $u, v \in V_p$. Por definição de bipartido completo, existem todas as arestas entre V_p e V_q . Portanto, N(u) = N(v), e os vértices $u, v \in V_p$ são vértices gêmeos de grau q. Por hipótese, p < q, e pelo Teorema 3.4, $\lambda_2(K_{p,q}) = p$. Logo, $grau(u) = grau(v) \neq \lambda_2(K_{p,q})$. Logo, pelo Teorema 5.3, podemos concluir que adicionar a aresta $(u, v), u, v \in V_p$ não aumenta a conectividade algébrica. \Box

Em um grafo bipartido completo $K_{p,q}$, o número de pares de vértices gêmeos nas condições da Proposição 5.6 é dado pela soma da combinação dois a dois dos elementos da partição V_p , ou seja, $\frac{p!}{(p-2)!.2!}$. Assim sendo, pela Proposição 5.6 pode-se concluir que existem $\frac{p!}{(p-2)!.2!}$ arestas as quais, quando incluídas isoladamente neste tipo de grafo não aumentam a conectividade algébrica.

Proposição 5.7. Seja G = SC(p,q) um grafo *split* completo, tal que $\lambda_2(G) \neq q$. Então, adicionar uma única aresta não aumenta a conectividade algébrica.

Demonstração. Seja G = SC(p,q) um grafo split completo. Então, por definição, G pode ser particionado em dois conjuntos disjuntos V_p, V_q , tais que V_p consiste em um conjunto independente de vértices, e V_q em uma clique. Além disso, cada um dos p vértices do conjunto independente é adjacente a todos os q vértices da clique. Logo, qualquer aresta $e \in G^c$ elegível a ser adicionada, incide em dois vértices de V_p . Porém, uma vez que V_p é um conjunto independente, todos os vértices contidos no mesmo possuem a mesma vizinhança, e são portanto, vértices gêmeos de grau q. Logo, pelo Teorema 5.3, não existe aresta a ser adicionada de modo a aumentar a conectividade algébrica.

Em um grafo *split* completo, o número de pares de vértices gêmeos é dado pela soma da combinação dois a dois dos elementos do conjunto independente V_p . Assim sendo, pela Proposição 5.7 pode-se concluir que existem $\frac{p!}{(p-2)!.2!}$ arestas as quais, quando incluídas isoladamente neste tipo de grafo não aumentam a conectividade algébrica.

6 CONSIDERAÇÕES FINAIS

6.1 CONCLUSÕES

Neste trabalho, apresentamos os resultados de estudos relacionados ao problema do aumento máximo da conectividade algébrica, dando continuidade ao trabalho de Oliveira (2012) e Rocha e Chaves (2013). Analisamos diferentes grafos das classes *Double Broom* e *Broom*, e efetuamos experimentos comparativos entre duas heurísticas para resolver o PAMCA: A heurística de excentricidade e a heurística de perturbação. Comparamos os resultados de cada heurística com o aumento máximo proporcionado pelas arestas escolhidas por um algoritmo de força bruta. Nestas classes de grafos, em geral a HE, que considera a excentricidade e o grau dos vértices, se saiu melhor do que a HP, principalmente para árvores *broom* de diâmetro aproximadamente metade do número de vértices das mesmas. Este fato sugere uma relação entre a aresta escolhida pela heurística e propriedades estruturais da árvore, como o grau máximo e valores característicos.

Investigamos também a relação deste parâmetro com o número isoperímétrico do grafo, bem como com os vértices característicos. No Capítulo 4, descrevemos estes experimentos. Investigamos também o comportamento das heurísticas em grafos do tipo *starlike*. Nesta classe de grafos, em geral, âmbas as heurísticas tiveram um desempenho similar. Entretanto, identificamos diversos casos onde não havia conjunto de arestas possível de tamanho fixado para efetuar o aumento do valor da conectividade algébrica.

Com base nestes últimos experimentos, e nos resultados teóricos apresentados no Capítulo 3, desenvolvemos resultados teóricos com relação à conectividade algébrica, e, para árvores *starlike* de ramos de mesmo diâmetro, identificamos o número mínimo de arestas a serem adicionadas para o aumento de deste parâmetro espectral.

Identificamos também resultados teóricos relacionando a conectividade algébrica e os vértices gêmeos de um grafo. Apresentamos três diferentes classes de grafos que possuem vértices gêmeos: os grafos bipartidos completos, os *split* completos e os grafos aranha, onde a cabeça forma um conjunto independente de vértices. Destacamos os casos em que adicionar uma aresta não aumenta o valor deste parâmetro.

6.2 TRABALHOS FUTUROS

Com relação às árvores *starlike*, em outros experimentos observamos o mesmo comportamento que deu origem ao Teorema 5.2 ao serem consideradas *starlikes* do tipo $S(p_1, ..., p_{\Delta})$ com comprimentos de caminhos p diferentes entre si. Este comportamento se mantinha no caso em que ao menos dois destes caminhos possuiam o mesmo comprimento. Propomos que as mesmas sejam investigadas, a fim de determinar se o teorema pode ser estendido para qualquer árvore *starlike*.

Uma alternativa de trabalho futuro é que sejam estendidos os experimentos descritos no Capítulo 4 para outra classe de grafos.

Ao longo deste trabalho, foi desenvolvida uma versão inicial de uma interface gráfica, utilizando a ferramenta Qt e a biblioteca PyQt, em linguagem Python. Propomos que seja dada continuidade à esta tarefa.

Na Seção 4, identificamos uma relação entre a aresta que maximiza o número isoperimétrico e a conectividade algébrica de algumas árvores *Double Broom*. Propomos que sejam continuados os experimentos para avaliar o relacionamento entre estes dois parâmetros ao acrescentar uma aresta em classes específicas de grafos.

Na Seção 5.2, foi provado que a adição de arestas as quais possuem extremidades incidentes em vértices gêmeos com grau diferente da conectividade algébrica não aumenta o valor deste parâmetro. No estudo realizado com relação às duas heurísticas tratadas nesta dissertação, HP e HE, observamos que estas arestas já são implicitamente desconsideradas pelos algoritmos. No caso da HP, sempre que possível as extremidades da aresta escolhida possuem componentes do vetor de Fiedler com valores diferentes. Pela Proposição 5.4, esses vértices não devem ser gêmeos. No caso da HE, as arestas entre vétices gêmeos estão implicitamente excluídas em razão do critério de escolha do próprio algoritmo, as excentricidades das extremidades com diferença de uma unidade. Propomos investigar outras características, além do vetor de Fiedler e da excentricidade que permitam identificar arestas não favoráveis ao aumento da conectividade algébrica.

Finalmente, propomos a investigação do seguinte problema. Consideremos a tarefa de, dado um grafo G, determinar o maior conjunto de arestas que quando adicionadas a G não aumentam o valor da conectividade algébrica. Até o nosso conhecimento, não existem na literatura trabalhos a este respeito. Seria interessante estudar o problema, a complexidade do mesmo e algoritmos para resolvê-lo.

7 REFERÊNCIAS BIBLIOGRÁFICAS

BAPAT, R. B. Graphs and matrices. London, ENG: Springer, 2014.

- BARRETO, B. S.; OLIVEIRA, C. S. Relações entre o aumento da conectividade algébrica e da confiabilidade de redes utilizando o vetor de fiedler como estratégia de inserção de arestas. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, XLIX., 2017. Anais... Blumenau, SC: SOBRAPO (Sociedade Brasileira de Pesquisa Operacional), 2017, p. 3326–3337.
- BERNHART, F.; KAINEN, P. C. The book thickness of a graph. Journal of Combinatorial Theory, Series B, v. 27, n. 3, p. 320–331, 1979.
- CHUNG, F. R.; GRAHAM, R. L. On multicolor ramsey numbers for complete bipartite graphs. Journal of Combinatorial Theory, Series B, v. 18, n. 2, p. 164–169, 1975.
- DE CARVALHO, C. S.; MARKENZON, L. ; DE MENDONÇA, L. F. Dois problemas de layout em grafos caterpillar. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPE-RACIONAL, XLIX., 2015. Anais... Porto de Galinhas, PE: SOBRAPO (Sociedade Brasileira de Pesquisa Operacional), 2015, p. 3339–3347.
- DEL-VECCHIO, R. R.; JONES, A. A. Propriedades espectrais dos grafos do tipo aranha. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, XLIX., 2012. Anais... Rio de Janeiro, RJ: SOBRAPO (Sociedade Brasileira de Pesquisa Operacional), 2012, p. 4105–4114.
- ERINC, G.; CARPIN, S. Anytime merging of appearance-based maps. Auton Robot, v. 36, n. 1, p. 241–256, 2013.
- FALLAT, S.; KIRKLAND, S. Extremizing algebraic connectivity subject to graph theoretic constraints. The Electronic Journal of Linear Algebra, v. 3, n. 1, p. 7, 1998.
- FIEDLER, M. Algebraic connectivity of graphs. Czechoslovak mathematical journal, v. 23, n. 2, p. 298–305, 1973.
- FIEDLER, M. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak mathematical journal, v. 25, n. 4, p. 619–633, 1975.
- FIEDLER, M. Laplacian of graphs and algebraic connectivity. Banach Center Publications, v. 25, n. 1, p. 57–70, 1989.
- GHOSH, A.; BOYD, S. Growing well-connected graphs. In: IEEE CONFERENCE ON DECISION AND CONTROL, 45., IEEE CONFERENCE, 45., 2006, USA. Proceedings... San Diego, USA: IEE, 2006, p. 6605–6611.

GODSIL, C. Algebraic combinatorics. 1. ed. New York, USA: CRC Press, 1993.

- GRONE, R.; MERRIS, R. Ordering trees by algebraic connectivity. Graphs and Combinatorics, v. 6, n. 3, p. 229–237, 1990.
- HARARY, F.; SCHWENK, A. J. The number of caterpillars. Discrete Mathematics, v. 6, n. 4, p. 359–365, 1973.
- HORN, R. A.; JOHNSON, C. R. Matrix analysis. 2. ed. New York, USA: Cambridge university press, 1990.
- JAMISON, B.; OLARIU, S. A tree representation for p4-sparse graphs. Discrete Applied Mathematics, v. 35, n. 2, p. 115–129, 1992.
- KIM, Y.; MESBAHI, M. On maximizing the second smallest eigenvalue of a statedependent graph laplacian. IEEE TRANSACTIONS ON AUTOMATIC CON-TROL, v. 51, n. 1, p. 116–120, 2006.
- KIRKLAND, S. J.; NEUMANN, M. ; SHADER, B. L. Bounds on the subdominant eigenvalue involving group inverse with applications to graphs. Czechoslovak Mathematical Journal, v. 48, n. 1, p. 1–20, 1998.
- KIRKLAND, S.; FALLAT, S. Perron components and algebraic connectivity for weighted graphs. Linear and Multilinear Algebra, v. 44, n. 2, p. 131–148, 1998.
- KIRKLAND, S.; NEUMANN, M. ; SHADER, B. L. Characteristic vertices of weighted trees via perron values. Linear and Multilinear Algebra, v. 40, n. 4, p. 311–325, 1996.
- KIRKLAND, S.; NEWMANN, M. Characteristic vertices of weighted trees via perron values. Linear and Multilinear Algebra, v. 40, p. 311–325, 1995.
- KIRKLAND, S.; OLIVEIRA, C. S. ; JUSTEL, C. M. On algebraic connectivity augmentation. Linear Algebra and its Applications, v. 435, n. 10, p. 2347–2356, 2011.
- LEPOVIĆ, M.; GUTMAN, I. No starlike trees are cospectral. Discrete mathematics, v. 242, n. 1-3, p. 291–295, 2002.
- MAAS, C. Transportation in graphs and the admittance spectrum. Discrete Applied Mathematics, v. 16, n. 1, p. 31–49, 1985.
- MEYER, C. D. Matrix analysis and applied linear algebra. 1. ed. Philadelphia, USA: SIAM, 2000.
- MOHAR, B. Isoperimetric number of graphs. Journal of Combinatorial Theory, v. 2, n. 47, p. 274–291, 1989.
- MOHAR, B.; ALAVI, Y.; CHARTRAND, G. ; OELLERMANN, O. The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications, v. 2, n. 871-898, p. 12, 1991.

- MOHAR, B.; SVATOPLUK, P. Eigenvalues and the max-cut problem. Czechoslovak Mathematical Journal, v. 40, n. 2, p. 343–352, 1990.
- MOSK-AOYAMA, D. Maximum algebraic connectivity augmentation is NP-hard. Operations Research Letters, v. 36, n. 6, p. 677–679, 2008.
- NAGARAJAN, H.; RATHINAM, S. ; DARBHA, S. On maximizing algebraic connectivity of networks for various engineering applications. In: CONTROL CONFERENCE (ECC), 2015 EUROPEAN, 14., 2015. Anais... Linz, Austria: IEEE, 2015, p. 1626– 1632.
- NIKOLOPOULOS, S. D. Constant-time parallel recognition of split graphs. Information processing letters, v. 54, n. 1, p. 1–8, 1995.
- OLIVEIRA, C. C. G. F. Sobre o problema Aumento Máximo da Conectividade Algébrica. 2012. 20 f. Dissertação (Mestrado em Sistemas e Computacao) – Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2012.
- OMIDI, G.; TAJBAKHSH, K. Starlike trees are determined by their laplacian spectrum. Linear Algebra and its Applications, v. 422, n. 2-3, p. 654–658, 2007.
- PATUZZI, L.; DE FREITAS, M. A. A.; DEL-VECCHIO, R. R. Indices for special classes of trees. Linear Algebra and its Applications, v. 442, p. 106–114, 2014.
- RADA, J.; TINEO, A. Upper and lower bounds for the energy of bipartite graphs. Journal of mathematical analysis and applications, v. 289, n. 2, p. 446–455, 2004.
- RICHTER, S.; ROCHA, I. Absolute algebraic connectivity of double brooms and trees. **Discrete Applied Mathematics**, v. 201, n. 1, p. 213–221, 2016.
- ROCHA, C.; CHAVES, E. Algoritmos para Problemas de Perturbações da Matriz Laplaciana de um Grafo. Rio de Janeiro, RJ: Instituto Militar de Engenharia, 2013. (Relatório Técnico).
- SYDNEY, A.; SCOGLIO, C. ; GRUENBACHER, D. Optimizing algebraic connectivity by edge rewiring. Applied Mathematics and computation, v. 219, n. 10, p. 5465– 5479, 2013.
- SZWARCFITER, J. L. Grafos e Algoritmos Computacionais. 1. ed. Rio de Janeiro, RJ: Campus, 1986.
- WANG, H.; MIEGHEM, P. V. Algebraic connectivity optimization via link addition. In: INTERNATIONAL CONFERENCE ON BIO-INSPIRED MODELS OF NETWORK, INFORMATION AND COMPUTING SYTEMS, 3., ICST, 3., 2008, Japan. Proceedings... Lugano, SWZ: ICST, 2008, p. 22–30.
- WATANABE, M.; SCHWENK, A. J. Integral starlike trees. Journal of the Australian Mathematical Society, v. 28, n. 1, p. 120–128, 1979.

8 APÊNDICES

APÊNDICE 1: EXPERIMENTOS EM ÁRVORES DOUBLE BROOM

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
3	5	1	2	T(1, 2, 3)	0,5188	(1, 4)	0,8299	(1, 3)	1	(1, 3)	1
3	6	1	3	T(1, 3, 3)	0,4859	(1, 4)	0,7639	(1, 3)	1	(1, 3)	1
3	6	2	2	T(2, 2, 3)	0,4384	(1, 5)	0,6571	(1, 4)	0,6314	(2, 5)	0,6571
3	7	1	4	T(1, 4, 3)	0,4659	(1, 4)	0,7269	(1, 3)	1	(1, 3)	1
3	7	2	3	T(2, 3, 3)	0,3983	(1, 5)	0,5858	(1, 4)	0,5961	(2, 4)	0,5961
3	8	1	5	T(1, 5, 3)	0,4525	(1, 4)	0,7029	(1, 3)	1	(1, 3)	1
3	8	2	4	T(2, 4, 3)	0,3738	(1, 5)	0,5449	(1, 4)	0,5738	(1, 4)	0,5738
3	8	3	3	T(3, 3, 3)	0,3542	(1, 6)	0,5107	(1, 5)	0,5069	(2, 7)	0,5107
3	9	1	6	T(1, 6, 3)	0,4428	(1, 4)	686	(1, 3)	1	(1, 3)	1
3	9	2	5	T(2, 5, 3)	0,3572	(1, 5)	518	(1, 4)	0,5582	(1, 4)	0,5582
3	9	3	4	T(3, 4, 3)	0,3272	(1, 6)	0,4672	(1, 5)	0,4791	(2, 5)	0,4791
3	10	1	7	T(1, 7, 3)	0,4355	(1, 4)	0,6734	(1, 3)	1	(1, 3)	1
3	10	2	6	T(2, 6, 3)	0,3451	(1, 5)	0,4988	(1, 4)	0,5466	(2, 4)	0,5466
3	10	3	5	T(3, 5, 3)	0,3087	(1, 6)	0,4384	(1, 5)	0,4596	(3, 5)	0,4596
3	10	4	4	T(4, 4, 3)	0,2984	(1, 7)	422	(1, 6)	0,4276	(5, 10)	0,4276
3	11	1	8	T(1, 8, 3)	0,4297	(1, 4)	0,6637	(1, 3)	1	(1, 3)	1
3	11	2	7	T(2, 7, 3)	0,3359	(1, 5)	0,4845	(1, 4)	0,5378	(1, 4)	0,5378
3	11	3	6	T(3, 6, 3)	0,2953	(1, 6)	0,4179	(1, 5)	0,4451	(2, 5)	0,4451
3	11	4	5	T(4, 5, 3)	0,2788	(1, 7)	392	(1, 6)	0,4058	(1, 6)	0,4058
3	12	1	9	T(1, 9, 3)	0,4251	(1, 4)	0,6559	(1, 3)	1	(1, 3)	1
3	12	2	8	T(2, 8, 3)	0,3287	(1, 5)	0,4733	(1, 4)	0,5307	(2, 4)	0,5307
3	12	3	7	T(3, 7, 3)	0,2851	(1, 6)	0,4024	(1, 5)	0,4339	(1, 5)	0,4339
3	12	4	6	T(4, 6, 3)	0,2645	(1, 7)	0,3705	(1, 6)	0,3896	(2, 6)	0,3896
3	12	5	5	T(5, 5, 3)	0,2583	(1, 8)	361	(1, 7)	0,3711	(6, 9)	0,3711
3	13	1	10	T(1, 10, 3)	0,4213	(1, 4)	0,6495	(1, 3)	1	(1, 3)	1
3	13	2	9	T(2, 9, 3)	0,3229	(1, 5)	0,4643	(1, 4)	0,5249	(2, 4)	0,5249
3	13	3	8	T(3, 8, 3)	0,2771	(1, 6)	0,3904	(1, 5)	0,4249	(3, 5)	0,4249
3	13	4	7	T(4, 7, 3)	0,2536	(1, 7)	0,3542	(1, 6)	377	(3, 6)	377
3	13	5	6	T(5, 6, 3)	0,2434	(1, 8)	0,3388	(1, 7)	0,3537	(1, 7)	0,3537
3	14	1	11	T(1, 11, 3)	0,4181	(1, 4)	0,6442	(1, 3)	1	(1, 3)	1
3	14	2	10	T(2, 10, 3)	0,3181	(1, 5)	457	(1, 4)	0,5201	(2, 4)	0,5201
3	14	3	9	T(3, 9, 3)	0,2706	(1, 6)	0,3807	(1, 5)	0,4176	(3, 5)	0,4176
3	14	4	8	T(4, 8, 3)	245	(1, 7)	0,3416	(1, 6)	367	(3, 6)	367
3	14	5	7	T(5, 7, 3)	232	(1, 8)	0,3221	(1, 7)	0,3403	(1, 7)	0,3403
3	14	6	6	T(6, 6, 3)	228	(1, 9)	0.3161	(1, 8)	0.3285	(4, 8)	0.3285

TAB. 8.1: Resultados para árvores $double\ broom$ ond
ed=3e $5\leq n\leq 14,$ inserindo uma única arest
a(t=1)
d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
3	15	1	12	T(1, 12, 3)	0,4154	(1, 4)	0,6397	(1, 3)	1	(1, 3)	1
3	15	2	11	T(2, 11, 3)	0,3141	(1, 5)	0,4508	(1, 4)	0,5161	(1, 4)	0,5161
3	15	3	10	T(3, 10, 3)	0,2652	(1, 6)	0,3727	(1, 5)	0,4116	(2, 5)	0,4116
3	15	4	9	T(4, 9, 3)	0,2381	(1, 7)	0,3314	(1, 6)	0,3588	(3, 6)	0,3588
3	15	5	8	T(5, 8, 3)	223	(1, 8)	309	(1, 7)	0,3295	(3, 7)	0,3295
3	15	6	7	T(6, 7, 3)	0,2162	(1, 9)	299	(1, 8)	0,3143	(3, 8)	0,3143
3	16	1	13	T(1, 13, 3)	0,4131	(1, 4)	0,6359	(1, 3)	1	(1, 3)	1
3	16	2	12	T(2, 12, 3)	0,3107	(1, 5)	0,4456	(1, 4)	0,5126	(1, 4)	0,5126
3	16	3	11	T(3, 11, 3)	0,2607	(1, 6)	0,3661	(1, 5)	0,4064	(1, 5)	0,4064
3	16	4	10	T(4, 10, 3)	0,2323	(1, 7)	323	(1, 6)	352	(1, 6)	352
3	16	5	9	T(5, 9, 3)	0,2157	(1, 8)	0,2984	(1, 7)	0,3207	(1, 7)	0,3207
3	16	6	8	T(6, 8, 3)	0,2069	(1, 9)	0,2855	(1, 8)	303	(3, 8)	303
3	16	7	7	T(7, 7, 3)	0,2042	(1, 10)	0,2815	(1, 9)	0,2949	(8, 15)	0,2949
3	17	1	14	T(1, 14, 3)	411	(1, 4)	0,6326	(1, 3)	1	(1, 3)	1
3	17	2	13	T(2, 13, 3)	0,3077	(1, 5)	0,4412	(1, 4)	0,5096	(1, 4)	0,5096
3	17	3	12	T(3, 12, 3)	0,2569	(1, 6)	0,3604	(1, 5)	402	(1, 5)	402
3	17	4	11	T(4, 11, 3)	0,2275	(1, 7)	316	(1, 6)	0,3462	(3, 6)	0,3462
3	17	5	10	T(5, 10, 3)	0,2097	(1, 8)	0,2898	(1, 7)	0,3133	(4, 7)	0,3133
3	17	6	9	T(6, 9, 3)	0,1994	(1, 9)	0,2747	(1, 8)	0,2937	(1, 8)	0,2937
3	17	7	8	T(7, 8, 3)	0,1946	(1, 10)	0,2678	(1, 9)	0,2832	(5, 9)	0,2832
3	18	1	15	T(1, 15, 3)	0,4093	(1, 4)	0,6297	(1, 3)	1	(1, 3)	1
3	18	2	14	T(2, 14, 3)	0,3051	(1, 5)	0,4373	(1, 4)	507	(1, 4)	507
3	18	3	13	T(3, 13, 3)	0,2535	(1, 6)	0,3555	(1, 5)	0,3982	(3, 5)	0,3982
3	18	4	12	T(4, 12, 3)	0,2234	(1, 7)	0,31	(1, 6)	0,3412	(4, 6)	0,3412
3	18	5	11	T(5, 11, 3)	0,2047	(1, 8)	0,2825	(1, 7)	0,3071	(3, 7)	0,3071
3	18	6	10	T(6, 10, 3)	0,1932	(1, 9)	0,2658	(1, 8)	286	(3, 8)	286
3	18	7	9	T(7, 9, 3)	0,1869	(1, 10)	0,2568	(1, 9)	0,2736	(4, 9)	0,2736
3	18	8	8	T(8, 8, 3)	0,1849	(1, 11)	0,2539	(1, 10)	0,2678	(9, 12)	0,2678
3	19	1	16	T(1, 16, 3)	0,4077	(1, 4)	0,6271	(1, 3)	1	(1, 3)	1
3	19	2	15	T(2, 15, 3)	0,3029	(1, 5)	0,4339	(1, 4)	0,5047	(1, 4)	0,5047
3	19	3	14	T(3, 14, 3)	0,2507	(1, 6)	0,3513	(1, 5)	0,3949	(3, 5)	0,3949
3	19	4	13	T(4, 13, 3)	0,2198	(1, 7)	0,3049	(1, 6)	0,3369	(2, 6)	0,3369
3	19	о С	12	1(5, 12, 3)	0,2004	(1, 8)	0,2763	(1, 7)	0,3018	(2, 7)	0,3018
3	19	6	11	T(6, 11, 3)	188	(1, 9)	0,2583	(1, 8)	0,2794	(1, 8)	0,2794
3	19	7	10	T(7, 10, 3)	0,1805	(1, 10)	0,2477	(1, 9)	0,2655	(6, 9)	0,2655
3	19	8	9	1(8, 9, 3)	0,1771	(1, 11)	0,2427	(1, 10)	0,2579	(2, 10)	0,2579
3	20	1	17	T(1, 17, 3)	0,4063	(1, 4)	0,6248	(1, 3)	1	(1, 3)	1
3	20	2	10	T(2, 10, 3) T(2, 15, 2)	0.3009	(1, 5)	0.2476	(1, 4)	0.2010	(1, 4)	0,0027
2	20	3	10	T(3, 10, 3) T(4, 14, 2)	0.2461	(1, 0)	0.3470	(1, 0)	0,3919	(3, 3)	0,3919
2	20	4	14	T(4, 14, 3) T(5, 12, 2)	0,2107	(1, 1)	0,3003	(1, 0)	0,3332	(1, 0)	0.3032
3	20	6	10	T(0, 10, 3) T(6, 12, 2)	0.1835	(1, 0)	252	(1, i)	0.2971	(3, 1)	0.2971
2	20	7	12	T(0, 12, 3) T(7, 11, 2)	0,1855	(1, 9)	2.52	(1, 8)	0.2130	(3, 8)	0,2130
2	20	0	10	T(i, 11, 3) T(2, 10, 2)	0,1705	(1, 10)	0.2224	(1, 9)	0,2307	(4, 9)	0,2307
2	20	0	10	T(0, 10, 3)	160	(1, 11)	0,2334	(1, 10)	0.2490	(3, 10)	0.2490
3	20	9	9	т(9, 9, ə)	109	(1, 12)	0,2313	(1, 11)	0,2405	(4, 11)	0,2405

TAB. 8.2: Resultados para árvores double broom onde d=3e $15\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
4	6	1	2	T(1, 2, 4)	0,3249	(1, 5)	0,6972	(1, 4)	0,7639	(1, 4)	0,7639
4	7	1	3	T(1, 3, 4)	0,2955	(1, 5)	0,6086	(1, 4)	0,7269	(1, 4)	0,7269
4	7	2	2	T(2, 2, 4)	0,2679	(1, 6)	0,5188	(1, 5)	514	(3, 5)	0,5505
4	8	1	4	T(1, 4, 4)	0,2774	(1, 5)	0,5607	(1, 4)	0,7029	(1, 4)	0,7029
4	8	2	3	T(2, 3, 4)	0,2384	(1, 6)	0,4484	(1, 5)	0,4746	(3, 5)	0,5069
4	9	1	5	T(1, 5, 4)	265	(1, 5)	0,53	(1, 4)	686	(1, 4)	686
4	9	2	4	T(2, 4, 4)	0,2201	(1, 6)	0,4083	(1, 5)	0,4492	(3, 5)	0,4791
4	9	3	3	T(3, 3, 4)	0,2087	(1, 7)	382	(1, 6)	397	(4, 6)	0,4586
4	10	1	6	T(1, 6, 4)	256	(1, 5)	0,5085	(1, 4)	0,6734	(1, 4)	0,6734
4	10	2	5	T(2, 5, 4)	0,2076	(1, 6)	382	(1, 5)	0,4313	(3, 5)	0,4596
4	10	3	4	T(3, 4, 4)	0,1902	(1, 7)	0,3436	(1, 6)	0,3702	(4, 6)	0,4276
4	11	1	7	T(1, 7, 4) T(2, 6, 4)	0,2492	(1, 5)	0,4926	(1, 4)	0,6637	(1, 4)	0,6637
4	11	2	5	T(2, 0, 4) T(2, 5, 4)	0,1984	(1, 0)	0,3033	(1, 5)	410	(3, 3)	0,4451
4	11	3	3	T(3, 5, 4) T(4, 4, 4)	0,1775	(1, 7)	206	(1, 0)	0,3313	(4, 0)	0,4058
4	12	-4 1	4 8	T(4, 4, 4) T(1 8 4)	0.2438	(1, 8)	0.4802	(1, 7)	0,5200	(3, 7)	0,3944
4	12	2	7	T(1, 3, 4) T(2, 7, 4)	0,2433	(1, 5)	0,4002	(1, 4) (1, 5)	0,0000	(1, 4) (3, 5)	0,0339
4	12	3	6	T(2, 7, 4) T(3, 6, 4)	0.1683	(1, 0) (1, 7)	0.3002	(1, 6)	0.3373	(0, 0)	0.3896
4	12	4	5	T(4, 5, 4)	0.1588	(1, 8)	0.2811	(1, 0) (1, 7)	0.3072	(1, 0) (5, 7)	0.3711
4	13	1	9	T(1, 9, 4)	0,2394	(1, 5)	0,4704	(1, 4)	0,6495	(1, 4)	0,6495
4	13	2	8	T(2, 8, 4)	186	(1, 6)	0,3383	(1, 5)	0,3995	(3, 5)	0,4249
4	13	3	7	T(3, 7, 4)	0,1612	(1, 7)	0,2866	(1, 6)	0,3264	(4, 6)	377
4	13	4	6	T(4, 6, 4)	0,1494	(1, 8)	0,2633	(1, 7)	0,2926	(5, 7)	0,3537
4	13	5	5	T(5, 5, 4)	0,1459	(1, 9)	0,2564	(1, 8)	0,2785	(6, 8)	0,3467
4	14	1	10	T(1, 10, 4)	0,2358	(1, 5)	0,4624	(1, 4)	0,6442	(1, 4)	0,6442
4	14	2	9	T(2, 9, 4)	0,1815	(1, 6)	0,3296	(1, 5)	0,3927	(3, 5)	0,4176
4	14	3	8	T(3, 8, 4)	0,1556	(1, 7)	276	(1, 6)	0,3176	(4, 6)	367
4	14	4	7	T(4, 7, 4)	0,1423	(1, 8)	0,2498	(1, 7)	0,2814	(5, 7)	0,3403
4	14	5	6	T(5, 6, 4)	0,1365	(1, 9)	0,2387	(1, 8)	0,2637	(6, 8)	0,3285
4	15	1	11	T(1, 11, 4) T(2, 10, 4)	0,2328	(1, 5)	0,4557	(1, 4) (1, 5)	0,0397	(1, 4)	0,0397
4	15	2	9	T(2, 10, 4) T(3, 9, 4)	0,1713	(1, 0)	0.2675	(1, 5)	0,3105	(3, 5)	0.3588
4	15	4	8	T(4, 8, 4)	0.1367	(1, 7)	0.2394	(1, 0)	0.2723	(1, 0) (5, 7)	0.3295
4	15	5	7	T(5, 7, 4)	0,1293	(1, 9)	0,2254	(1, 8)	0,2522	(6, 8)	0,3143
4	15	6	6	T(6, 6, 4)	127	(1, 10)	0,2211	(1, 9)	0,2433	(7, 9)	0,3096
4	16	1	12	T(1, 12, 4)	0,2302	(1, 5)	0,45	(1, 4)	0,6359	(1, 4)	0,6359
4	16	2	11	T(2, 11, 4)	0,1748	(1, 6)	0,3164	(1, 5)	0,3824	(3, 5)	0,4064
4	16	3	10	T(3, 10, 4)	0,1474	(1, 7)	0,2605	(1, 6)	0,3046	(4, 6)	352
4	16	4	9	T(4, 9, 4)	0,1321	(1, 8)	0,2309	(1, 7)	265	(5, 7)	0,3207
4	16	5	8	T(5, 8, 4)	0,1236	(1, 9)	0,2149	(1, 8)	243	(6, 8)	303
4	10	1	12	T(0, 7, 4) T(1, 12, 4)	0,1198	(1, 10)	0,2078	(1, 9)	0,2313	(1, 9)	0,2949
4	17	2	12	T(1, 13, 4) T(2, 12, 4)	0.1722	(1, 5)	0,4452	(1, 4) (1, 5)	0,0320	(1, 4) (3, 5)	402
4	17	3	11	T(2, 12, 1) T(3, 11, 4)	0.1443	(1, 3)	0.2547	(1, 6)	0.2995	(0, 0) (4, 6)	0.3462
4	17	4	10	T(4, 10, 4)	0.1283	(1, 8)	224	(1, 7)	0.2588	(5, 7)	0.3133
4	17	5	9	T(5, 9, 4)	119	(1, 9)	0,2065	(1, 8)	0,2354	(6, 8)	0,2937
4	17	6	8	T(6, 8, 4)	0,1141	(1, 10)	0,1974	(1, 9)	0,2222	(7, 9)	0,2832
4	17	7	7	T(7, 7, 4)	0,1125	(1, 11)	0,1945	(1, 10)	0,2161	(8, 10)	0,2798
4	18	1	14	T(1, 14, 4)	0,2261	(1, 5)	441	(1, 4)	0,6297	(1, 4)	0,6297
4	18	2	13	T(2, 13, 4)	0,1699	(1, 6)	307	(1, 5)	0,3748	(3, 5)	0,3982
4	18	3	12	T(3, 12, 4)	0,1416	(1, 7)	0,2497	(1, 6)	0,2952	(4, 6)	0,3412
4	18	4	11	1(4, 11, 4)	0,1252	(1, 8)	0,2182	(1, 7)	0,2536	(5, 7)	0,3071
4	18	0 6	10	T(5, 10, 4)	0.1004	(1, 9)	0,1997	(1, 8)	0,2291	(0, 8)	280 0.2726
4	18	0	9	T(0, 9, 4) $T(7 \circ 4)$	0.1094	(1, 10)	189	(1, 9)	0,2145	(7, 9)	0.2730
4	19	1	15	T(1, 0, 4) T(1, 15, 4)	0.2244	(1, 11) (1, 5)	0.4373	(1, 10)	0.6271	(1 4)	0.6271
4	19	2	14	T(1, 15, 4) T(2, 14, 4)	0,2244	(1, 5)	0,4070	(1, 4) (1, 5)	0.3717	(1, 4) (3, 5)	0,0271
4	19	3	13	T(3, 13, 4)	0,1393	(1, 7)	0,2454	(1, 6)	0,2915	(4, 6)	0,3369
4	19	4	12	T(4, 12, 4)	0,1225	(1, 8)	0,2133	(1, 7)	0,2491	(5, 7)	0,3018
4	19	5	11	T(5, 11, 4)	112	(1, 9)	0,1939	(1, 8)	0,2238	(6, 8)	0,2794
4	19	6	10	T(6, 10, 4)	0,1056	(1, 10)	0,1822	(1, 9)	0,2081	(7, 9)	0,2655
4	19	7	9	T(7, 9, 4)	0,1021	(1, 11)	0,1758	(1, 10)	0,1989	(8, 10)	0,2579
4	19	8	8	T(8, 8, 4)	101	(1, 12)	0,1738	(1, 11)	0,1946	(9, 11)	0,2554
4	20		16	T(1, 16, 4)	0,2229	(1, 5)	0,4341	(1, 4)	0,6248	(1, 4)	0,6248
4	20	2	15	1(2, 15, 4) T(2, 14, 4)	0.1272	(1, 6)	0,2999	(1, 5)	0,3089	(3, 5)	0,3919
4 1	20	3	12	T(3, 14, 4) T(4, 13, 4)	0.1201	(1, 1) (1.8)	0.2001	(1, 0) (1, 7)	0.2453	(4, 0) (5, 7)	0.2971
4	20	5	12	T(5, 12, 4)	0,1093	(1, 0) (1, 9)	189	(1, 7) (1, 8)	0.2192	(6, 8)	0.2738
4	20	6	11	T(6, 11, 4)	0,1024	(1, 10)	0,1764	(1, 9)	0,2027	(7, 9)	0,2587
4	20	7	10	T(7, 10, 4)	0,0983	(1, 11)	0,1689	(1, 10)	0,1924	(8, 10)	0,2496
4	20	8	9	T(8, 9, 4)	0,0964	(1, 12)	0,1654	(1, 11)	0,1867	(9, 11)	0,2453

TAB. 8.3: Resultados para árvores $double\ broom$ ond
ed=4e $6\leq n\leq 20,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
5	7	1	2	T(1, 2, 5)	0,2254	(1, 6)	0,5858	(1, 5)	0,6086	(1, 5)	0,6086
5	8	1	3	T(1, 3, 5)	0,2023	(1, 6)	0,4965	(1, 5)	0,5607	(1, 5)	0,5607
5	8	2	2	T(2, 2, 5)	0,1864	(1, 7)	0,4384	(1, 6)	0,4484	(3, 6)	0,5107
5	9	1	4	T(1, 4, 5)	0,1876	(1, 6)	0,4484	(1, 5)	0,53	(1, 5)	0,53
5	9	2	3	T(2, 3, 5)	0.1649	(1, 7)	0.3749	(1, 6)	0,4083	(3, 6)	0.4672
5	10	1	5	T(1, 5, 5)	0.1775	(1, 6)	0.4175	(1, 5)	0.5085	(1, 5)	0.5085
5	10	2	4	T(2, 4, 5)	0.1512	(1, 7)	0.3378	(1, 6)	382	(3, 6)	0.4384
5	10	- 3	3	T(3, 3, 5)	0.1442	(1, 8)	0.3187	(1, 7)	0.3436	(3, 3) (4, 7)	422
5	11	1	6	T(1, 6, 5)	0.17	(1, 6)	0.3959	(1, 5)	0.4926	(1, 5)	0.4926
5	11	2	5	T(2, 5, 5)	0.1417	(1, 7)	0.3132	(1, 6)	0.3633	(3, 6)	0.4179
5	11	3	4	T(3, 4, 5)	131	(1, 1)	0.2852	(1, 0) (1, 7)	0.3183	(0, 0) (4, 7)	392
5	12	1	7	T(0, 4, 5) T(1, 7, 5)	0 1643	(1, 0)	0.3799	(1, 7)	0.4802	(1, 7)	0.4802
5	12	2	6	T(2, 6, 5)	0.1347	(1, 0) (1, 7)	0.2956	(1, 0)	0.3493	(3, 6)	0.4024
5	12	3	5	T(2, 5, 5) T(3, 5, 5)	0,1047	(1, 7)	0.2627	(1, 0)	0.3002	(0, 0)	0,4024
5	12	4	4	T(3, 3, 5) T(4, 4, 5)	118	(1, 0)	0.2534	(1, 7)	0.2811	(4, 7) (5.8)	361
5	12	1	8	T(1, 4, 5) T(1, 8, 5)	0.1507	(1, 5)	0.3675	(1, 0)	0,2011	(0, 0)	0.4704
5	10	2	7	T(1, 0, 0) T(2, 7, 5)	0,1007	(1, 0)	0,3073	(1, 0)	0,4704	(1, 0)	0,4704
5	13	2	6	T(2, 7, 5) T(2, 6, 5)	0,1293	(1, 7)	0,2624	(1, 0)	0,3383	(3, 0)	0,3904
5	13	3	5	T(3, 0, 5) T(4, 5, 5)	0,1149	(1, 8)	0,2403	(1, 7)	0,2800	(4, 7)	0,3342
5	10	-4	0	T(4, 0, 0) T(1, 0, 5)	0.1561	(1, 9)	0.2575	(1, 0)	0,2033	(3, 6)	0,3300
5	14	1	9	T(1, 9, 0) T(2, 9, 5)	125	(1, 0)	0,3373	(1, 0)	0,4024	(1, 0)	0,4024
5	14	2	0	1(2, 0, 0) T(2, 7, 5)	120	(1, 1)	414	(1, 0)	0,3290	(3, 0)	0.2416
0	14	3		1(3, 7, 5)	0,1097	(1, 8)	0,2342	(1, 1)	210	(4, 1)	0,3410
0 7	14	4	0	1(4, 6, 5) T(5, 5, 5)	0,1022	(1, 9)	0,2100	(1, 8)	0,2498	(3, 8)	0,3221
5	14	5	5	1(5, 5, 5)	0,0999	(1, 10)	0,2113	(1, 9)	0,2387	(6, 9)	0,3161
5	15	1	10	T(1, 10, 5)	153	(1, 6)	0,3494	(1, 5)	0,4557	(1, 5)	0,4557
5	15	2	9	T(2, 9, 5)	0,1215	(1, 7)	0,2637	(1, 6)	0,3224	(3, 6)	0,3727
5	15	3	8	T(3, 8, 5)	0,1055	(1, 8)	0,2246	(1, 7)	0,2675	(4, 7)	0,3314
5	15	4	7	T(4, 7, 5)	97	(1, 9)	0,2048	(1, 8)	0,2394	(5, 8)	309
5	15	5	6	T(5, 6, 5)	0,0933	(1, 10)	0,1963	(1, 9)	0,2254	(6, 9)	299
5	16	1	11	T(1, 11, 5)	0,1505	(1, 6)	0,3427	(1, 5)	0,45	(1, 5)	0,45
5	16	2	10	T(2, 10, 5)	0,1186	(1, 7)	0,2569	(1, 6)	0,3164	(3, 6)	0,3661
5	16	3	9	T(3, 9, 5)	0,1021	(1, 8)	0,2169	(1, 7)	0,2605	(4, 7)	323
5	16	4	8	T(4, 8, 5)	93	(1, 9)	0,1956	(1, 8)	0,2309	(5, 8)	0,2984
5	16	5	7	T(5, 7, 5)	0,0882	(1, 10)	0,1848	(1, 9)	0,2149	(6, 9)	0,2855
5	16	6	6	T(6, 6, 5)	0,0868	(1, 11)	0,1815	(1, 10)	0,2078	(7, 10)	0,2815
5	17	1	12	T(1, 12, 5)	0,1483	(1, 6)	337	(1, 5)	0,4452	(1, 5)	0,4452
5	17	2	11	T(2, 11, 5)	0,1162	(1, 7)	0,2512	(1, 6)	0,3114	(3, 6)	0,3604
5	17	3	10	T(3, 10, 5)	0,0993	(1, 8)	0,2105	(1, 7)	0,2547	(4, 7)	316
5	17	4	9	T(4, 9, 5)	0,0896	(1, 9)	0,1882	(1, 8)	224	(5, 8)	0,2898
5	17	5	8	T(5, 8, 5)	0,0842	(1, 10)	0,1759	(1, 9)	0,2065	(6, 9)	0,2747
5	17	6	7	T(6, 7, 5)	0,0817	(1, 11)	0,1703	(1, 10)	0,1974	(7, 10)	0,2678
5	18	1	13	T(1, 13, 5)	0,1464	(1, 6)	0,3321	(1, 5)	441	(1, 5)	441
5	18	2	12	T(2, 12, 5)	0,1141	(1, 7)	0,2463	(1, 6)	307	(3, 6)	0,3555
5	18	3	11	T(3, 11, 5)	97	(1, 8)	0,2052	(1, 7)	0,2497	(4, 7)	0,31
5	18	4	10	T(4, 10, 5)	0,0869	(1, 9)	182	(1, 8)	0,2182	(5, 8)	0,2825
5	18	5	9	T(5, 9, 5)	0,0809	(1, 10)	0,1686	(1, 9)	0,1997	(6, 9)	0,2658
5	18	6	8	T(6, 8, 5)	0,0777	(1, 11)	0,1615	(1, 10)	189	(7, 10)	0,2568
5	18	7	7	T(7, 7, 5)	0,0767	(1, 12)	0,1593	(1, 11)	0,1842	(8, 11)	0,2539
5	19	1	14	T(1, 14, 5)	0,1448	(1, 6)	0,3279	(1, 5)	0,4373	(1, 5)	0,4373
5	19	2	13	T(2, 13, 5)	0,1123	(1, 7)	0,2421	(1, 6)	0,3032	(3, 6)	0,3513
5	19	3	12	T(3, 12, 5)	0,0949	(1, 8)	0,2006	(1, 7)	0,2454	(4, 7)	0,3049
5	19	4	11	T(4, 11, 5)	0,0845	(1, 9)	0,1769	(1, 8)	0,2133	(5, 8)	0,2763
5	19	5	10	T(5, 10, 5)	0.0782	(1, 10)	0.1626	(1, 9)	0.1939	(6, 9)	0.2583
5	19	6	9	T(6, 9, 5)	0,0744	(1, 11)	0,1544	(1, 10)	0,1822	(7, 10)	0,2477
5	19	7	8	T(7, 8, 5)	0.0727	(1, 12)	0,1506	(1, 11)	0,1758	(8, 11)	0,2427
5	20	1	15	T(1, 15, 5)	0,1433	(1, 6)	0,3241	(1, 5)	0,4341	(1, 5)	0.4341
5	20	2	14	T(2, 14, 5)	0,1108	(1, 7)	0,2385	(1, 6)	0,2999	(3, 6)	0,3476
5	20	3	13	T(3, 13, 5)	0.0932	(1, 8)	0.1967	(1, 7)	0.2417	(4, 7)	0.3005
5	20	4	12	T(4, 12, 5)	0.0826	(1, 9)	0.1725	(1, 8)	0.2091	(5, 8)	271
5	20	5	11	T(5, 11, 5)	0.0758	(1, 10)	0.1576	(1, 9)	189	(6, 9)	252
5	20	6	10	T(6, 10, 5)	0.0717	(1, 10)	0.1485	(1, 0)	0.1764	(7, 10)	0.2401
5	20	7	9	T(7, 9, 5)	0.0694	(1, 12)	0 1436	(1, 10)	0.1689	(8, 11)	0.2334
5	20	8	8	T(8, 8, 5)	0,0687	(1, 12)	142	(1, 12)	0,1654	(9, 12)	0,2313
-	-	-	-	(-) -) -)	- /				- /		

TAB. 8.4: Resultados para árvores $double\ broom$ ond
ed=5e $7\leq n\leq 20,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
6	8	1	2	$T(1 \ 2 \ 6)$	0 1667	(1 7)	0 4915	$(1 \ 6)$	0 4965	(2, 6)	0 5447
6	9	1	3	T(1, 2, 6) T(1, 3, 6)	0.1487	(1, 7)	0.4116	(1, 6)	0.4484	(2, 6)	0.4966
6	a a	2	2	T(2, 2, 6)	0.1392	(1, 1)	382	(1, 0) (1, 7)	0.4012	(2, 0) (3, 7)	0.4818
6	10	1	4	T(2, 2, 0) T(1, 4, 6)	137	(1, 0)	0.3676	(1, 7)	0.4175	(0, 1)	0.4646
6	10	2	3	T(2, 3, 6)	0.1231	(1, 7)	0.3259	(1, 0) (1, 7)	0.3613	(2, 0) (3, 7)	0.4384
6	11	1	5	T(2, 5, 6) T(1, 5, 6)	0,1281	(1, 0)	0.3301	(1, 7)	0.3050	(0, 1)	0.4410
6	11	2	4	T(1, 3, 0) T(2, 4, 6)	0,1200	(1, 7)	0,3331	(1, 0)	0,3333	(2, 0)	0,4413
6	11	2	4 2	T(2, 4, 0) T(3, 3, 6)	108	(1, 8)	0,2919	(1, 7)	0,3348	(3, 7)	0,4085
6	11	1	6	T(3, 3, 0) T(1, 6, 6)	0.1227	(1, 3)	210	(1, 0)	0,3032	(4, 6)	0,3374
6	12	1	5	T(1, 0, 0) T(2, 5, 6)	0,1227	(1, 7)	319	(1, 0)	0,3799	(2, 0)	0,4249
6	12	2	3	T(2, 5, 6) T(2, 4, 6)	0,1051	(1, 8)	209	(1, 7)	0,3137	(3, 7)	0,3603
6	12	3 1	4 7	T(3, 4, 0) T(1, 7, 6)	0,0981	(1, 9)	0,2492	(1, 8)	0,2651	(4, 8)	0,3083
6	13	1	6	T(1, 7, 0) T(2, 6, 6)	0.0005	(1, 7)	0.0504	(1, 0)	0,3075	(2, 0)	0,4110
6	13	2	5	T(2, 0, 0)	0,0995	(1, 8)	0,2324	(1, 7)	0,3014	(3, 7)	0,3090
6	13	3	5	T(3, 5, 6) T(4, 4, 6)	91	(1, 9)	0,2289	(1, 8)	0,2070	(4, 8)	0,3408
6	13	4	4	1(4, 4, 6)	0,0885	(1, 10)	0,2219	(1, 9)	0,2533	(5, 9)	0,3397
6	14	1	8	1(1, 8, 6)	0,1142	(1, 7)	0,2924	(1, 6)	0,3575	(2, 6)	401
6	14	2	(1(2, 7, 6)	0,0952	(1, 8)	0,2399	(1, 7)	0,2902	(3, 7)	0,3564
6	14	3	6	T(3, 6, 6)	0,0857	(1, 9)	214	(1, 8)	0,2543	(4, 8)	0,3304
6	14	4	5	T(4, 5, 6)	0,0817	(1, 10)	0,2031	(1, 9)	0,2366	(5, 9)	0,3185
6	15	1	9	1(1, 9, 6)	0,1112	(1, 7)	0,2831	(1, 6)	0,3494	(2, 6)	0,3923
6	15	2	8	T(2, 8, 6)	0,0918	(1, 8)	0,2301	(1, 7)	0,2812	(3, 7)	0,3458
6	15	3	7	T(3, 7, 6)	0,0816	(1, 9)	0,2027	(1, 8)	0,2439	(4, 8)	0,3173
6	15	4	6	T(4, 6, 6)	0,0766	(1, 10)	0,1892	(1, 9)	224	(5, 9)	0,3021
6	15	5	5	T(5, 5, 6)	75	(1, 11)	0,1851	(1, 10)	0,2152	(6, 10)	0,2973
6	16	1	10	T(1, 10, 6)	0,1086	(1, 7)	0,2754	(1, 6)	0,3427	(2, 6)	385
6	16	2	9	T(2, 9, 6)	0,0889	(1, 8)	0,2222	(1, 7)	0,2738	(3, 7)	0,3371
6	16	3	8	T(3, 8, 6)	0,0784	(1, 9)	0,1938	(1, 8)	0,2355	(4, 8)	0,3068
6	16	4	7	T(4, 7, 6)	0,0726	(1, 10)	0,1786	(1, 9)	214	(5, 9)	0,2891
6	16	5	6	T(5, 6, 6)	0,07	(1, 11)	0,1719	(1, 10)	0,2028	(6, 10)	281
6	17	1	11	T(1, 11, 6)	0,1065	(1, 7)	0,2691	(1, 6)	337	(2, 6)	0,3788
6	17	2	10	T(2, 10, 6)	0,0866	(1, 8)	0,2156	(1, 7)	0,2677	(3, 7)	0,3298
6	17	3	9	1(3, 9, 6)	0,0757	(1, 9)	0,1866	(1, 8)	0,2286	(4, 8)	0,2981
6	17	4	8	T(4, 8, 6)	0,0694	(1, 10)	0,1702	(1, 9)	0,2059	(5, 9)	0,2786
6	17	5	7	T(5, 7, 6)	0,0662	(1, 11)	0,1617	(1, 10)	0,1931	(6, 10)	268
6	17	0	0	1(0, 0, 0)	0,0651	(1, 12)	0,1591	(1, 11)	0,1873	(7, 11)	0,2646
6	18	1	12	T(1, 12, 6)	0,1046	(1, 7)	0,2637	(1, 6)	0,3321	(2, 6)	0,3735
6	18	2	11	T(2, 11, 6)	0,0846	(1, 8)	0,2102	(1, 7)	0,2624	(3, 7)	0,3236
6	18	3	10	1(3, 10, 6)	0,0734	(1, 9)	0,1806	(1, 8)	0,2228	(4, 8)	0,2907
0	18	4	9	1(4, 9, 6)	0,0668	(1, 10)	0,1034	(1, 9)	0,1992	(3, 9)	0,2098
6	18	5	8	1(5, 8, 6) T(6, 7, 6)	0.0612	(1, 11)	0,1537	(1, 10)	0,1853	(6, 10)	0,2574
0	18	0	10	1(0, 1, 0)	0,0613	(1, 12)	0,1492	(1, 11)	0,1//8	(1, 11)	0,2510
0	19	1	13	1(1, 13, 6)	103	(1, 7)	0,2591	(1, 6)	0,3279	(2, 6)	0,3089
6	19	2	12	1(2, 12, 6)	0.0829	(1, 8)	0,2055	(1, 7)	0,2579	(3, 7)	0,3182
6	19	3	11	1(3, 11, 6)	0,0716	(1, 9)	0,1756	(1, 8)	0,2178	(4, 8)	0,2845
6	19	4	10	1(4, 10, 6)	0,0647	(1, 10)	0,1578	(1, 9)	0,1936	(5, 9)	0,2625
6	19	5	9	1(5, 9, 6)	0,0605	(1, 11)	0,1471	(1, 10)	0,1788	(6, 10)	0,2487
6	19	6	8	1(0, 8, 0)	0,0583	(1, 12)	0,1414	(1, 11)	0,1701	(7, 11)	241
6	19	7	1	$\Gamma(7, 7, 6)$	0,0576	(1, 13)	0,1396	(1, 12)	100	(8, 12)	0,2386
6	20	1	14	T(1, 14, 6)	0,1016	(1, 7)	0,2551	(1, 6)	0,3241	(2, 6)	0,3649
6	20	2	13	1(2, 13, 6)	0,0815	(1, 8)	0,2015	(1, 7)	254	(3, 7)	0,3135
6	20	3	12	1(3, 12, 6)	0,07	(1, 9)	0,1713	(1, 8)	0,2136	(4, 8)	0,2791
6	20	4	11	1(4, 11, 6)	0,0629	(1, 10)	153	(1, 9)	0,1889	(5, 9)	0,2562
6	20	5	10	1(5, 10, 6)	0,0584	(1, 11)	0,1417	(1, 10)	0,1733	(6, 10)	0,2413
6	20	6	9	1(6, 9, 6)	0,0558	(1, 12)	135	(1, 11)	0,1637	(7, 11)	0,2323
6	20	7	8	T(7, 8, 6)	0,0546	(1, 13)	0,1319	(1, 12)	0,1584	(8, 12)	228

TAB. 8.5: Resultados para árvores double broom onde d=6e $6\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
7	10	1	3	T(1, 3, 7)	0,1148	(1, 8)	0,3457	(1, 7)	0,3676	(2, 7)	0,4367
7	10	2	2	T(2, 2, 7)	0.1088	(1, 9)	0.3376	(1, 8)	0,3617	(3, 8)	0,4558
7	11	1	4	T(1, 4, 7)	0.1054	(1, 8)	0.3071	(1, 7)	0,3391	(2, 7)	0,4028
7	11	2	3	T(2, 3, 7)	0,0964	(1, 9)	0,2888	(1, 8)	0,3226	(3, 8)	0,4108
7	12	1	5	T(1, 5, 7)	0,0987	(1, 8)	0,2817	(1, 7)	0,319	(2, 7)	0,3789
7	12	2	4	T(2, 4, 7)	0,0881	(1, 9)	0,2577	(1, 8)	0,2962	(3, 8)	0,3778
7	12	3	3	T(3, 3, 7)	0,085	(1, 10)	0,2497	(1, 9)	0,283	(4, 9)	0,3772
7	13	1	6	T(1, 6, 7)	0.0936	(1, 8)	0,2636	(1, 7)	0,304	(2, 7)	0,3612
7	13	2	5	T(2, 5, 7)	0,0821	(1, 9)	0,2364	(1, 8)	0,2773	(3, 8)	0,3539
7	13	3	4	T(3, 4, 7)	0,0773	(1, 10)	0,2235	(1, 9)	0,2599	(4, 9)	0,3487
7	14	1	7	T(1, 7, 7)	0,0897	(1, 8)	0,25	(1, 7)	0,2924	(2, 7)	0,3474
7	14	2	6	T(2, 6, 7)	0,0775	(1, 9)	0,2208	(1, 8)	0,2631	(3, 8)	0,3358
7	14	3	5	T(3, 5, 7)	0,0717	(1, 10)	0,2049	(1, 9)	0,2429	(4, 9)	0,3266
7	14	4	4	T(4, 4, 7)	0,0699	(1, 11)	0,2	(1, 10)	0,2332	(5, 10)	0,3231
7	15	1	8	T(1, 8, 7)	0,0865	(1, 8)	0,2394	(1, 7)	0,2831	(2, 7)	0,3364
7	15	2	7	T(2, 7, 7)	0,074	(1, 9)	0,209	(1, 8)	0,2519	(3, 8)	0,3216
7	15	3	6	T(3, 6, 7)	0,0674	(1, 10)	0,1912	(1, 9)	0,2298	(4, 9)	0,3093
7	15	4	5	T(4, 5, 7)	0,0646	(1, 11)	0,1831	(1, 10)	0,2175	(5, 10)	0,3026
7	16	1	9	T(1, 9, 7)	0,084	(1, 8)	0,2309	(1, 7)	0,2754	(2, 7)	0,3274
7	16	2	8	T(2, 8, 7)	0,0712	(1, 9)	0,1997	(1, 8)	0,243	(3, 8)	0,3102
7	16	3	7	T(3, 7, 7)	0,0641	(1, 10)	0,1806	(1, 9)	0,2196	(4, 9)	0,2956
7	16	4	6	T(4, 6, 7)	0,0605	(1, 11)	0,1705	(1, 10)	0,2053	(5, 10)	0,2863
7	16	5	5	T(5, 5, 7)	0,0594	(1, 12)	0,1673	(1, 11)	0,1987	(6, 11)	0,2832
7	17	1	10	T(1, 10, 7)	0,0818	(1, 8)	0,224	(1, 7)	0,2691	(2, 7)	0,3198
7	17	2	9	T(2, 9, 7)	0,0688	(1, 9)	0,1921	(1, 8)	0,2356	(3, 8)	0,3009
7	17	3	8	T(3, 8, 7)	0,0615	(1, 10)	0,1722	(1, 9)	0,2112	(4, 9)	0,2845
7	17	4	7	T(4, 7, 7)	0,0573	(1, 11)	0,1607	(1, 10)	0,1957	(5, 10)	0,2732
7	17	5	6	T(5, 6, 7)	0,0555	(1, 12)	0,1554	(1, 11)	0,1872	(6, 11)	0,2675
7	18	1	11	T(1, 11, 7)	0,08	(1, 8)	0,2181	(1, 7)	0,2637	(2, 7)	0,3135
7	18	2	10	T(2, 10, 7)	0,0669	(1, 9)	0,1859	(1, 8)	0,2295	(3, 8)	0,2931
7	18	3	9	T(3, 9, 7)	0,0593	(1, 10)	0,1654	(1, 9)	0,2044	(4, 9)	0,2753
7	18	4	8	T(4, 8, 7)	0,0548	(1, 11)	0,1529	(1, 10)	0,1878	(5, 10)	0,2624
7	18	5	7	T(5, 7, 7)	0,0524	(1, 12)	0,1462	(1, 11)	0,1779	(6, 11)	0,2548
7	18	6	6	T(6, 6, 7)	0,0517	(1, 13)	0,1441	(1, 12)	0,1733	(7, 12)	0,2523
7	19	1	12	1(1, 12, 7)	0,0784	(1, 8)	0,2132	(1, 7)	0,2591	(2, 7)	0,308
7	19	2	11	T(2, 11, 7)	0,0652	(1, 9)	0,1807	(1, 8)	0,2243	(3, 8)	0,2865
1	19	3	10	1(3, 10, 7)	0,0574	(1, 10)	0,1597	(1, 9)	0,1986	(4, 9)	0,2676
7	19	4	9	1(4, 9, 7)	0,0527	(1, 11)	0,1405	(1, 10)	0,1813	(5, 10)	0,2535
7	19	о 6	8	$1(0, \delta, i)$ T(6, 7, 7)	0,0499	(1, 12)	0.1252	(1, 11)	0,1644	(0, 11)	0,2444
7	19	1	12	T(0, 1, 1) T(1, 12, 7)	0,0407	(1, 13)	0,1332	(1, 12)	0,1044	(1, 12)	0,2099
7	20	2	10	T(1, 13, 7)	0.0629	(1, 0)	0,2009	(1, 1)	0,2001	(2, 1)	0,3033
7	20	2	14	T(2, 12, 7) T(3, 11, 7)	0.0550	(1, 9)	0.1540	(1, 0)	0.1037	(3, 6)	0.261
7	20	4	10	T(4, 10, 7)	0.0509	(1, 10)	0.1412	(1, 3)	0.1758	(4, 3) (5, 10)	0.2459
7	20	5	0	T(4, 10, 7)	0.0479	(1, 11)	0.1327	(1, 10)	0.1642	(0, 10)	0.2356
7	20	6	8	T(6, 8, 7)	0.0479	(1, 12) (1, 13)	0.1281	(1, 11)	0.1571	(0, 11) (7 12)	0,2330
7	20	7	7	T(7, 7, 7)	0.0452	(1, 10)	0.1266	(1, 12)	0.1538	(8, 12)	0.2277
· ·	20	'	· '	- (1, 1, 1)	0,0407	(1, 14)	0,1200	(1, 10)	0,1000	(0, 10)	0,2211

TAB. 8.6: Resultados para árvores $double\ broom$ onded=7e $9\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
8	10	1	2	T(1, 2, 8)	0,1029	(1, 9)	0,3489	(1, 8)	0,3457	(2, 8)	0,4107
8	11	1	3	T(1, 3, 8)	0,0917	(1, 9)	0,2935	(1, 8)	0,3071	(2, 8)	0,3674
8	11	2	2	T(2, 2, 8)	0,0878	(1, 10)	0,3004	(1, 9)	0,3249	(3, 9)	0,4038
8	12	1	4	T(1, 4, 8)	0,0841	(1, 9)	0,2604	(1, 8)	0,2817	(2, 8)	0,3379
8	12	2	3	T(2, 3, 8)	0,0781	(1, 10)	0,2583	(1, 9)	0,2873	(3, 9)	0,3669
8	13	1	5	T(1, 5, 8)	0,0785	(1, 9)	0,2382	(1, 8)	0,2636	(2, 8)	0,3165
8	13	2	4	T(2, 4, 8)	0,0713	(1, 10)	0,23	(1, 9)	262	(3, 9)	0,3351
8	13	3	3	T(3, 3, 8)	0,0692	(1, 11)	0,2266	(1, 10)	0,2607	(4, 10)	0,3581
8	14	1	6	T(1, 6, 8)	0,0743	(1, 9)	0,2222	(1, 8)	0,25	(2, 8)	0,3004
8	14	2	5	T(2, 5, 8)	0,0664	(1, 10)	0,2102	(1, 9)	0,2439	(3, 9)	0,3119
8	14	3	4	T(3, 4, 8)	63	(1, 11)	0,2033	(1, 10)	0,2384	(4, 10)	0,3269
8	15	1	7	T(1, 7, 8)	71	(1, 9)	0,21	(1, 8)	0,2394	(2, 8)	0,2878
8	15	2	6	T(2, 6, 8)	0,0626	(1, 10)	0,1957	(1, 9)	0,2302	(3, 9)	0,2945
8	15	3	5	T(3, 5, 8)	0,0585	(1, 11)	0,1863	(1, 10)	0,2218	(4, 10)	0,3028
8	15	4	4	T(4, 4, 8)	0,0572	(1, 12)	0,1831	(1, 11)	0,2169	(5, 11)	0,3083
8	16	1	8	T(1, 8, 8)	0,0683	(1, 9)	0,2005	(1, 8)	0,2309	(2, 8)	0,2777
8	16	2	7	T(2, 7, 8)	0,0597	(1, 10)	0,1845	(1, 9)	0,2195	(3, 9)	0,2808
8	16	3	6	T(3, 6, 8)	55	(1, 11)	0,1734	(1, 10)	209	(4, 10)	0,2846
8	16	4	5	T(4, 5, 8)	0,0529	(1, 12)	0,1679	(1, 11)	202	(5, 11)	0,2879
8	17	1	9	T(1, 9, 8)	0,0661	(1, 9)	0,1928	(1, 8)	224	(2, 8)	0,2694
8	17	2	8	T(2, 8, 8)	0,0573	(1, 10)	0,1757	(1, 9)	0,2108	(3, 9)	0,2699
8	17	3	7	T(3, 7, 8)	0,0522	(1, 11)	0,1634	(1, 10)	0,1988	(4, 10)	0,2704
8	17	4	6	T(4, 6, 8)	0,0496	(1, 12)	0,1563	(1, 11)	0,1902	(5, 11)	0,2709
8	17	5	5	T(5, 5, 8)	0,0487	(1, 13)	154	(1, 12)	0,1858	(6, 12)	0,2711
8	18	1	10	T(1, 10, 8)	0,0643	(1, 9)	0,1865	(1, 8)	0,2181	(2, 8)	0,2625
8	18	2	9	T(2, 9, 8)	0,0553	(1, 10)	0,1686	(1, 9)	0,2038	(3, 9)	0,2608
8	18	3	8	T(3, 8, 8)	0,05	(1, 11)	0,1554	(1, 10)	0,1906	(4, 10)	0,2589
8	18	4	7	T(4, 7, 8)	47	(1, 12)	0,1471	(1, 11)	0,1808	(5, 11)	0,2571
8	18	5	6	T(5, 6, 8)	0,0456	(1, 13)	0,1432	(1, 12)	0,1749	(6, 12)	0,2559
8	19	1	11	T(1, 11, 8)	0,0628	(1, 9)	0,1812	(1, 8)	0,2132	(2, 8)	0,2565
8	19	2	10	T(2, 10, 8)	0,0537	(1, 10)	0,1627	(1, 9)	0,1978	(3, 9)	0,2533
8	19	3	9	T(3, 9, 8)	0,0482	(1, 11)	0,1489	(1, 10)	0,1838	(4, 10)	0,2495
8	19	4	8	T(4, 8, 8)	0,0448	(1, 12)	0,1398	(1, 11)	0,1731	(5, 11)	0,2458
8	19	5	7	T(5, 7, 8)	0,0431	(1, 13)	0,1347	(1, 12)	0,1661	(6, 12)	0,2431
8	19	6	6	T(6, 6, 8)	0,0425	(1, 14)	133	(1, 13)	0,1626	(7, 13)	0,2421
8	20	1	12	T(1, 12, 8)	0,0614	(1, 9)	0,1767	(1, 8)	0,2089	(2, 8)	0,2515
8	20	2	11	T(2, 11, 8)	0,0523	(1, 10)	0,1578	(1, 9)	0,1928	(3, 9)	0,2469
8	20	3	10	T(3, 10, 8)	0,0466	(1, 11)	0,1435	(1, 10)	0,1781	(4, 10)	0,2417
8	20	4	9	T(4, 9, 8)	0,0431	(1, 12)	0,1338	(1, 11)	0,1667	(5, 11)	0,2365
8	20	5	8	T(5, 8, 8)	41	(1, 13)	0,1278	(1, 12)	0,1588	(6, 12)	0,2324
8	20	6	7	T(6, 7, 8)	0,04	(1, 14)	0,1249	(1, 13)	0,1542	(7, 13)	0,2302

TAB. 8.7: Resultados para árvores $double\ broom$ ond
ed=8e $10\leq n\leq 20,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
9	11	1	2	T(1, 2, 9)	0,0842	(1, 10)	0,2968	(1, 9)	0,2935	(2, 10)	0,3418
9	12	1	3	T(1, 3, 9)	0,0752	(1, 10)	0,2517	(1, 9)	0,2604	(2, 9)	0,3057
9	12	2	2	T(2, 2, 9)	0,0725	(1, 11)	0,2679	(1, 10)	0,2882	(3, 10)	0,3249
9	13	1	4	T(1, 4, 9)	0,0689	(1, 10)	0,2236	(1, 9)	0,2382	(3, 9)	0,2824
9	13	2	3	T(2, 3, 9)	0,0648	(1, 11)	0,2318	(1, 10)	0,2538	(3, 10)	0,3028
9	14	1	5	T(1, 5, 9)	0,0643	(1, 10)	0,2043	(1, 9)	0,2222	(3, 9)	0,2727
9	14	2	4	T(2, 4, 9)	0,0592	(1, 11)	0,2062	(1, 10)	0,2306	(3, 10)	0,2813
9	14	3	3	T(3, 3, 9)	0,0577	(1, 12)	0,2071	(1, 11)	0,24	(4, 11)	0,2955
9	15	1	6	T(1, 6, 9)	0,0607	(1, 10)	0,1902	(1, 9)	0,21	(3, 9)	0,2625
9	15	2	5	T(2, 5, 9)	0,0551	(1, 11)	188	(1, 10)	0,2139	(3, 10)	0,2636
9	15	3	4	T(3, 4, 9)	0,0527	(1, 12)	0,1864	(1, 11)	0,2183	(4, 11)	0,2806
9	16	1	7	T(1, 7, 9)	0,0579	(1, 10)	0,1794	(1, 9)	0,2005	(3, 9)	0,2531
9	16	2	6	T(2, 6, 9)	52	(1, 11)	0,1745	(1, 10)	0,2012	(3, 10)	0,2494
9	16	3	5	T(3, 5, 9)	0,0489	(1, 12)	0,1706	(1, 11)	0,2021	(4, 11)	0,2635
9	16	4	4	T(4, 4, 9)	0,0479	(1, 13)	0,1692	(1, 12)	0,2027	(5, 12)	0,2774
9	17	1	8	T(1, 8, 9)	0,0556	(1, 10)	0,1709	(1, 9)	0,1928	(3, 9)	0,2449
9	17	2	7	T(2, 7, 9)	0,0495	(1, 11)	0,1641	(1, 10)	0,1913	(3, 10)	238
9	17	3	6	T(3, 6, 9)	46	(1, 12)	0,1586	(1, 11)	0,1896	(4, 11)	0,2488
9	17	4	5	T(4, 5, 9)	0,0444	(1, 13)	0,1555	(1, 12)	0,1882	(5, 12)	0,2634
9	18	1	9	T(1, 9, 9)	0,0538	(1, 10)	164	(1, 9)	0,1865	(3, 9)	0,2377
9	18	2	8	T(2, 8, 9)	0,0474	(1, 11)	0,1559	(1, 10)	0,1833	(3, 10)	0,2287
9	18	3	7	T(3, 7, 9)	0,0437	(1, 12)	0,1491	(1, 11)	0,1798	(4, 11)	0,2366
9	18	4	6	T(4, 6, 9)	0,0416	(1, 13)	0,1447	(1, 12)	0,1767	(5, 12)	0,2473
9	18	5	5	T(5, 5, 9)	41	(1, 14)	0,1432	(1, 13)	0,1749	(6, 13)	0,2596
9	19	1	10	T(1, 10, 9)	0,0522	(1, 10)	0,1583	(1, 9)	0,1812	(3, 9)	0,2315
9	19	2	9	T(2, 9, 9)	0,0457	(1, 11)	0,1492	(1, 10)	0,1767	(3, 10)	0,2209
9	19	3	8	T(3, 8, 9)	0,0418	(1, 12)	0,1415	(1, 11)	0,1718	(4, 11)	0,2266
9	19	4	7	T(4, 7, 9)	0,0395	(1, 13)	0,1361	(1, 12)	0,1675	(5, 12)	0,2341
9	19	5	6	T(5, 6, 9)	0,0384	(1, 14)	0,1334	(1, 13)	0,1645	(6, 13)	243
9	20	1	11	T(1, 11, 9)	0,0508	(1, 10)	0,1535	(1, 9)	0,1767	(3, 9)	0,2261
9	20	2	10	T(2, 10, 9)	0,0443	(1, 11)	0,1437	(1, 10)	0,1712	(3, 10)	0,2143
9	20	3	9	T(3, 9, 9)	0,0402	(1, 12)	0,1353	(1, 11)	0,1653	(4, 11)	0,2183
9	20	4	8	T(4, 8, 9)	0,0377	(1, 13)	0,1291	(1, 12)	0,1599	(5, 12)	0,2233
9	20	5	7	T(5, 7, 9)	0,0363	(1, 14)	0,1254	(1, 13)	0,1559	(6, 13)	0,2291
9	20	6	6	T(6, 6, 9)	0,0359	(1, 15)	0,1242	(1, 14)	0,1538	(7, 14)	0,2328

TAB. 8.8: Resultados para árvores double broom onde d=9e $11\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
10	12	1	2	T(1, 2, 10)	0,0702	(1, 11)	0,2545	(1, 10)	0,2517	(2, 12)	0,2923
10	13	1	3	T(1, 3, 10)	0,0629	(1, 11)	0,2179	(1, 10)	0,2236	(3, 10)	0,2679
10	13	2	2	T(2, 2, 10)	0,0611	(1, 12)	0,2392	(1, 11)	0,2515	(3, 11)	0,2679
10	14	1	4	T(1, 4, 10)	0,0577	(1, 11)	0,194	(1, 10)	0,2043	(3, 10)	0,2679
10	14	2	3	T(2, 3, 10)	0,0547	(1, 12)	0,2081	(1, 11)	0,2223	(3, 11)	0,2505
10	15	1	5	T(1, 5, 10)	0,0538	(1, 11)	0,1773	(1, 10)	0,1902	(3, 10)	0,2629
10	15	2	4	T(2, 4, 10)	0,0502	(1, 12)	0,185	(1, 11)	0,2021	(3, 11)	0,2345
10	15	3	3	T(3, 3, 10)	0,049	(1, 13)	0,1899	(1, 12)	0,2185	(4, 12)	0,2418
10	16	1	6	T(1, 6, 10)	0,0508	(1, 11)	0,1649	(1, 10)	0,1794	(3, 10)	0,247
10	16	2	5	T(2, 5, 10)	0,0467	(1, 12)	0,1685	(1, 11)	0,1873	(3, 11)	0,2209
10	16	3	4	T(3, 4, 10)	0,0449	(1, 13)	0,1715	(1, 12)	0,1978	(4, 12)	0,2309
10	17	1	7	T(1, 7, 10)	0,0483	(1, 11)	0,1553	(1, 10)	0,1709	(3, 10)	0,2346
10	17	2	6	T(2, 6, 10)	0,044	(1, 12)	0,1561	(1, 11)	0,176	(3, 11)	0,2097
10	17	3	5	T(3, 5, 10)	0,0417	(1, 13)	0,1569	(1, 12)	0,1825	(4, 12)	0,2198
10	17	4	4	T(4, 4, 10)	0,041	(1, 14)	0,1572	(1, 13)	0,1891	(5, 13)	0,2254
10	18	1	8	T(1, 8, 10)	0,0464	(1, 11)	0,1477	(1, 10)	0,164	(3, 10)	0,2246
10	18	2	7	T(2, 7, 10)	0,0418	(1, 12)	0,1466	(1, 11)	0,167	(3, 11)	0,2005
10	18	3	6	T(3, 6, 10)	0,0392	(1, 13)	0,1455	(1, 12)	0,1708	(4, 12)	0,2095
10	18	4	5	T(4, 5, 10)	0,038	(1, 14)	0,1448	(1, 13)	0,1749	(5, 13)	0,2178
10	19	1	9	T(1, 9, 10)	0,0447	(1, 11)	0,1415	(1, 10)	0,1583	(3, 10)	0,2164
10	19	2	8	T(2, 8, 10)	0,0401	(1, 12)	0,139	(1, 11)	0,1598	(3, 11)	0,1928
10	19	3	7	T(3, 7, 10)	0,0372	(1, 13)	0,1365	(1, 12)	0,1616	(4, 12)	0,2005
10	19	4	6	T(4, 6, 10)	0,0357	(1, 14)	0,1347	(1, 13)	0,1636	(5, 13)	0,209
10	19	5	5	T(5, 5, 10)	0,0352	(1, 15)	0,1341	(1, 14)	0,165	(6, 14)	0,2142
10	20	1	10	T(1, 10, 10)	0,0434	(1, 11)	0,1364	(1, 10)	0,1535	(3, 10)	0,2096
10	20	2	9	T(2, 9, 10)	0,0386	(1, 12)	0,1328	(1, 11)	0,1538	(3, 11)	0,1863
10	20	3	8	T(3, 8, 10)	0,0356	(1, 13)	0,1293	(1, 12)	0,1541	(4, 12)	0,1927
10	20	4	7	T(4, 7, 10)	0,0338	(1, 14)	0,1266	(1, 13)	0,1545	(5, 13)	0,2005
10	20	5	6	T(5, 6, 10)	0,033	(1, 15)	0,1251	(1, 14)	0,1548	(6, 14)	0,2082

TAB. 8.9: Resultados para árvores double broom onde d=10e $12\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
11	13	1	2	T(1, 2, 11)	0,0595	(1, 12)	0,2201	(1, 11)	0,2179	(2, 13)	0,2459
11	14	1	3	T(1, 3, 11)	0,0535	(1, 12)	0,1901	(1, 11)	0,194	(3, 11)	0,233
11	14	2	2	T(2, 2, 11)	0,0522	(1, 13)	0,2137	(1, 12)	0,2174	(3, 12)	0,2254
11	15	1	4	T(1, 4, 11)	0,0491	(1, 12)	0,1699	(1, 11)	0,1773	(3, 11)	0,2273
11	15	2	3	T(2, 3, 11)	0,047	(1, 13)	0,1864	(1, 12)	0,194	(3, 15)	0,2137
11	16	1	5	T(1, 5, 11)	0,0458	(1, 12)	0,1554	(1, 11)	0,1649	(3, 11)	0,2188
11	16	2	4	T(2, 4, 11)	0,0431	(1, 13)	0,1659	(1, 12)	0,177	(3, 12)	0,1979
11	16	3	3	T(3, 3, 11)	0,0423	(1, 14)	0,1744	(1, 13)	0,194	(4, 13)	0,2023
11	17	1	6	T(1, 6, 11)	0,0432	(1, 12)	0,1445	(1, 11)	0,1553	(3, 11)	0,2093
11	17	2	5	T(2, 5, 11)	0,0402	(1, 13)	0,1511	(1, 12)	0,1642	(4, 12)	0,1904
11	17	3	4	T(3, 4, 11)	0,0388	(1, 14)	0,1579	(1, 13)	0,1763	(4, 13)	0,1932
11	18	1	7	T(1, 7, 11)	0,0411	(1, 12)	0,136	(1, 11)	0,1477	(3, 11)	0,2005
11	18	2	6	T(2, 6, 11)	0,0378	(1, 13)	0,14	(1, 12)	0,1543	(4, 12)	0,1902
11	18	3	5	T(3, 5, 11)	0,0361	(1, 14)	0,1442	(1, 13)	0,163	(4, 13)	0,1845
11	18	4	4	T(4, 4, 11)	0,0355	(1, 15)	0,1465	(1, 14)	0,1744	(5, 14)	0,1876
11	19	1	8	T(1, 8, 11)	0,0394	(1, 12)	0,1292	(1, 11)	0,1415	(3, 11)	0,1927
11	19	2	7	T(2, 7, 11)	0,036	(1, 13)	0,1313	(1, 12)	0,1463	(4, 12)	0,1895
11	19	3	6	T(3, 6, 11)	0,0339	(1, 14)	0,1335	(1, 13)	0,1526	(4, 13)	0,1766
11	19	4	5	T(4, 5, 11)	0,033	(1, 15)	0,1352	(1, 14)	0,1605	(5, 14)	0,1814
11	20	1	9	T(1, 9, 11)	0,038	(1, 12)	0,1237	(1, 11)	0,1364	(3, 11)	0,186
11	20	2	8	T(2, 8, 11)	0,0344	(1, 13)	0,1244	(1, 12)	0,1399	(4, 12)	0,1868
11	20	3	7	T(3, 7, 11)	0,0322	(1, 14)	0,1251	(1, 13)	0,1443	(4, 13)	0,1696
11	20	4	6	T(4, 6, 11)	0,031	(1, 15)	0,1258	(1, 14)	0,1498	(5, 14)	0,175
11	20	5	5	T(5, 5, 11)	0,0306	(1, 16)	0,126	(1, 15)	0,1553	(6, 15)	0,1775

TAB. 8.10: Resultados para árvores double broom onde d=11e $13\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
12	14	1	2	T(1, 2, 12)	0,0511	(1, 13)	0,1919	(1, 12)	0,1901	(2, 13)	0,2099
12	15	1	3	T(1, 3, 12)	0,0461	(1, 13)	0,1672	(1, 12)	0,1699	(3, 12)	0,1998
12	15	2	2	T(2, 2, 12)	0,0452	(1, 14)	0,191	(1, 13)	0,1883	(3, 13)	0,1926
12	16	1	4	T(1, 4, 12)	0,0424	(1, 13)	0,15	(1, 12)	0,1554	(3, 12)	0,1923
12	16	2	3	T(2, 3, 12)	0,0408	(1, 14)	0,1663	(1, 13)	0,1696	(3, 14)	0,1822
12	17	1	5	T(1, 5, 12)	0,0395	(1, 13)	0,1374	(1, 12)	0,1445	(3, 12)	0,1843
12	17	2	4	T(2, 4, 12)	0,0375	(1, 14)	0,1486	(1, 13)	0,1554	(4, 13)	0,1704
12	17	3	3	T(3, 3, 12)	0,0369	(1, 15)	0,1602	(1, 14)	0,1688	(4, 14)	0,1722
12	18	1	6	T(1, 6, 12)	0,0373	(1, 13)	0,1278	(1, 12)	0,136	(3, 12)	0,1766
12	18	2	5	T(2, 5, 12)	0,035	(1, 14)	0,1356	(1, 13)	0,1444	(4, 13)	0,1694
12	18	3	4	T(3, 4, 12)	0,0339	(1, 15)	0,145	(1, 14)	0,1554	(4, 16)	0,1656
12	19	1	7	T(1, 7, 12)	0,0355	(1, 13)	0,1202	(1, 12)	0,1292	(3, 12)	0,1697
12	19	2	6	T(2, 6, 12)	0,033	(1, 14)	0,1257	(1, 13)	0,1358	(4, 13)	0,1679
12	19	3	5	T(3, 5, 12)	0,0316	(1, 15)	0,1322	(1, 14)	0,1444	(4, 14)	0,1572
12	19	4	4	T(4, 4, 12)	0,0312	(1, 16)	0,1366	(1, 15)	0,1553	(5, 15)	0,1591
12	20	1	8	T(1, 8, 12)	0,034	(1, 13)	0,1142	(1, 12)	0,1237	(3, 12)	0,1635
12	20	2	7	T(2, 7, 12)	0,0313	(1, 14)	0,1179	(1, 13)	0,1289	(4, 13)	0,1655
12	20	3	6	T(3, 6, 12)	0,0298	(1, 15)	0,1223	(1, 14)	0,1355	(4, 14)	0,1507
12	20	4	5	T(4, 5, 12)	0,029	(1, 16)	0,1263	(1, 15)	0,1442	(5, 20)	0,1546

TAB. 8.11: Resultados para árvores double broom onde d=12e $14\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
13	15	1	2	T(1, 2, 13)	0,0444	(1, 14)	0,1686	(1, 13)	0,1672	(2, 14)	0,1815
13	16	1	3	T(1, 3, 13)	0,0402	(1, 14)	148	(1, 13)	0,15	(3, 13)	0,1726
13	16	2	2	T(2, 2, 13)	0,0395	(1, 15)	0,1667	(1, 14)	0,1642	(3, 14)	0,1667
13	17	1	4	T(1, 4, 13)	37	(1, 14)	0,1333	(1, 13)	0,1374	(3, 14)	0,1663
13	17	2	3	T(2, 3, 13)	0,0358	(1, 15)	148	(1, 14)	149	(3, 16)	0,1574
13	18	1	5	T(1, 5, 13)	0,0346	(1, 14)	0,1223	(1, 13)	0,1278	(3, 13)	0,1578
13	18	2	4	T(2, 4, 13)	33	(1, 15)	133	(1, 14)	0,1371	(4, 14)	0,1499
13	18	3	3	T(3, 3, 13)	0,0325	(1, 16)	147	(1, 15)	147	(4, 15)	0,1487
13	19	1	6	T(1, 6, 13)	0,0326	(1, 14)	0,1139	(1, 13)	0,1202	(4, 13)	0,1522
13	19	2	5	T(2, 5, 13)	0,0308	(1, 15)	0,1218	(1, 14)	0,1277	(4, 14)	0,1475
13	19	3	4	T(3, 4, 13)	0,03	(1, 16)	0,1322	(1, 15)	0,1366	(4, 16)	0,1428
13	20	1	7	T(1, 7, 13)	31	(1, 14)	0,1072	(1, 13)	0,1142	(4, 13)	0,1522
13	20	2	6	T(2, 6, 13)	29	(1, 15)	113	(1, 14)	0,1202	(4, 14)	0,1446
13	20	3	5	T(3, 5, 13)	28	(1, 16)	0,1206	(1, 15)	0,1276	(4, 15)	0,1357
13	20	4	4	T(4, 4, 13)	0,0276	(1, 17)	0,1275	(1, 16)	0,1356	(5, 16)	137

TAB. 8.12: Resultados para árvores double broom onde d=13e $15\leq n\leq 20,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
14	16	1	2	T(1, 2, 14)	0,0389	(1, 15)	0,1491	(1, 14)	148	(2, 16)	0,1585
14	17	1	3	T(1, 3, 14)	0,0354	(1, 15)	0,1319	(1, 14)	0,1333	(3, 14)	0,1505
14	17	2	2	T(2, 2, 14)	0,0348	(1, 16)	0,1459	(1, 15)	0,1443	(1, 16)	0,1459
14	18	1	4	T(1, 4, 14)	0,0326	(1, 15)	0,1193	(1, 14)	0,1223	(3, 15)	0,1444
14	18	2	3	T(2, 3, 14)	0,0317	(1, 16)	0,1317	(1, 15)	0,1317	(3, 17)	0,1376
14	19	1	5	T(1, 5, 14)	0,0305	(1, 15)	0,1097	(1, 14)	0,1139	(4, 14)	138
14	19	2	4	T(2, 4, 14)	0,0293	(1, 16)	0,1193	(1, 15)	0,1217	(4, 15)	0,1319
14	19	3	3	T(3, 3, 14)	0,0289	(1, 17)	0,13	(1, 16)	129	(1, 17)	0,13
14	20	1	6	T(1, 6, 14)	0,0288	(1, 15)	0,1022	(1, 14)	0,1072	(4, 14)	0,1372
14	20	2	5	T(2, 5, 14)	0,0274	(1, 16)	0,1096	(1, 15)	0,1136	(4, 15)	0,1288
14	20	3	4	T(3, 4, 14)	0,0267	(1, 17)	0,1193	(1, 16)	0,1206	(4, 19)	0,1246

TAB. 8.13: Resultados para árvores $double\ broom$ ond
ed=14e $16\leq n\leq 20,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
20	22	1	2	T(1, 2, 20)	0,0205	(1, 21)	0,0804	(1, 20)	0,0801	(3, 20)	0,0825
20	23	1	3	T(1, 3, 20)	0,0189	(1, 21)	0,0735	(1, 20)	0,0737	(3, 23)	0,0781
20	23	2	2	T(2, 2, 20)	0,0188	(1, 22)	0,0767	(1, 21)	0,0765	(3, 21)	0,0767
20	24	1	4	T(1, 4, 20)	0,0177	(1, 21)	0,0678	(1, 20)	0,0686	(4, 20)	0,0749
20	24	2	3	T(2, 3, 20)	0,0174	(1, 22)	0,0716	(1, 21)	0,0713	(3, 23)	0,0725
20	25	1	5	T(1, 5, 20)	0,0166	(1, 21)	0,0632	(1, 20)	0,0643	(4, 25)	0,0726
20	25	2	4	T(2, 4, 20)	0,0163	(1, 22)	0,0667	(1, 21)	0,0668	(4, 21)	0,0696
20	25	3	3	T(3, 3, 20)	0,0162	(1, 23)	0,0686	(1, 22)	0,0685	(3, 25)	0,0686
20	26	1	6	T(1, 6, 20)	0,0158	(1, 21)	0,0593	(1, 20)	0,0607	(4, 22)	0,0703
20	26	2	5	T(2, 5, 20)	0,0154	(1, 22)	0,0625	(1, 21)	0,0631	(4, 23)	0,0672
20	26	3	4	T(3, 4, 20)	0,0151	(1, 23)	0,0651	(1, 22)	0,0649	(4, 23)	0,0656
20	27	1	7	T(1, 7, 20)	15	(1, 21)	0,0561	(1, 20)	0,0578	(5, 20)	0,0692
20	27	2	6	T(2, 6, 20)	0,0145	(1, 22)	0,0589	(1, 21)	0,0599	(5, 21)	0,0655
20	27	3	5	T(3, 5, 20)	0,0143	(1, 23)	0,0616	(1, 22)	0,0617	(5, 22)	0,0635
20	27	4	4	T(4, 4, 20)	0,0142	(1, 24)	0,0629	(1, 23)	0,0628	(1, 26)	0,0629
20	28	1	8	T(1, 8, 20)	0,0144	(1, 21)	0,0534	(1, 20)	0,0552	(5, 20)	0,0682
20	28	2	7	T(2, 7, 20)	0,0139	(1, 22)	0,0559	(1, 21)	0,0571	(5, 21)	0,0643
20	28	3	6	T(3, 6, 20)	0,0135	(1, 23)	0,0584	(1, 22)	0,0589	(5, 24)	0,0619
20	28	4	5	T(4, 5, 20)	0,0134	(1, 24)	0,0603	(1, 23)	0,0602	(5, 26)	0,0607
20	29	1	9	T(1, 9, 20)	0,0138	(1, 21)	51	(1, 20)	53	(5, 27)	0,0673
20	29	2	8	T(2, 8, 20)	0,0133	(1, 22)	0,0532	(1, 21)	0,0547	(5, 24)	0,0631
20	29	3	7	T(3, 7, 20)	0,0129	(1, 23)	0,0556	(1, 22)	0,0564	(5, 24)	0,0603
20	29	4	6	T(4, 6, 20)	0,0127	(1, 24)	0,0577	(1, 23)	0,0578	(6, 23)	59
20	29	5	5	T(5, 5, 20)	0,0126	(1, 25)	0,0587	(1, 24)	0,0586	(4, 27)	0,0587
20	30	1	10	T(1, 10, 20)	0,0133	(1, 21)	49	(1, 20)	0,0511	(5, 20)	0,0662
20	30	2	9	T(2, 9, 20)	0,0128	(1, 22)	51	(1, 21)	0,0527	(5, 21)	0,0618
20	30	3	8	T(3, 8, 20)	0,0124	(1, 23)	0,0531	(1, 22)	0,0542	(6, 22)	0,0592
20	30	4	7	T(4, 7, 20)	0,0121	(1, 24)	0,0552	(1, 23)	0,0556	(6, 23)	0,0578
20	30	5	6	T(5, 6, 20)	12	(1, 25)	0,0567	(1, 24)	0,0566	(6, 26)	57
20	31	1	11	T(1, 11, 20)	0,0129	(1, 21)	0,0473	(1, 20)	0,0495	(5, 20)	0,0652
20	31	2	10	T(2, 10, 20)	0,0123	(1, 22)	49	(1, 21)	0,0509	(6, 21)	0,0609
20	31 21	3	9	T(3, 9, 20) T(4, 8, 20)	0,0119	(1, 23)	0,0509	(1, 22)	0,0525	(0, 22)	0,0585
20	21	4 E	0	T(4, 0, 20) T(5, 7, 20)	0,0110	(1, 24) (1, 25)	0,0528	(1, 23)	0,0550	(0, 24)	0,0507
20	31 21	6	6	T(5, 7, 20) T(6, 6, 20)	0,0114	(1, 25) (1, 26)	0,0540	(1, 24) (1, 25)	0,0547	(1, 24)	0,0554
20	20	1	12	T(0, 0, 20) T(1, 12, 20)	0,0114	(1, 20)	0,0354	(1, 20)	19	(4, 31) (5, 20)	0,0534
20	22	2	12	T(1, 12, 20) T(2, 11, 20)	0,0123	(1, 21) (1, 22)	0,0457	(1, 20)	40	(3, 20)	0,0042
20	32	2	10	T(2, 11, 20) T(3, 10, 20)	0,0115	(1, 22) (1, 23)	0,0473	(1, 21) (1, 22)	0,0493	(0, 21) (6, 22)	0,0003
20	32	4	9	T(0, 10, 20) T(4, 9, 20)	0.0111	(1, 20) (1, 24)	0.0508	(1, 22) (1, 23)	0.0518	(0, 22) (6, 30)	0.0556
20	32	5	8	T(4, 3, 20) T(5, 8, 20)	0.0109	(1, 24) (1, 25)	0.0525	(1, 20)	53	(0, 00) (7, 24)	0.0546
20	32	6	7	T(6, 7, 20)	0.0108	(1, 26)	0.0538	(1, 25)	0.0537	(7, 29)	54
20	33	1	13	T(1, 13, 20)	0.0122	(1, 21)	0.0444	(1, 20)	0.0467	(6, 20)	0.0638
20	33	2	12	T(2, 12, 20)	0.0116	(1, 22)	0.0457	(1, 21)	0.0478	(6, 21)	0.0602
20	33	3	11	T(3, 11, 20)	0.0111	(1, 23)	0,0472	(1, 22)	49	(6, 31)	0.0572
20	33	4	10	T(4, 10, 20)	0.0108	(1, 24)	0.0489	(1, 23)	0.0502	(7, 23)	0.0546
20	33	5	9	T(5, 9, 20)	0,0105	(1, 25)	0,0506	(1, 24)	0,0513	(7, 24)	0,0538
20	33	6	8	T(6, 8, 20)	0,0104	(1, 26)	0,0521	(1, 25)	0,0522	(7, 31)	0,0527
20	33	7	7	T(7, 7, 20)	0,0103	(1, 27)	0,0528	(1, 26)	0,0527	(7, 30)	0,0528
20	34	1	14	T(1, 14, 20)	0,0119	(1, 21)	0,0431	(1, 20)	0,0455	(6, 20)	0,0637
20	34	2	13	T(2, 13, 20)	0,0113	(1, 22)	0,0444	(1, 21)	0,0466	(6, 21)	0,0598
20	34	3	12	T(3, 12, 20)	0,0108	(1, 23)	0,0457	(1, 22)	0,0477	(6, 22)	0,0564
20	34	4	11	T(4, 11, 20)	0,0104	(1, 24)	0,0472	(1, 23)	0,0488	(7, 23)	0,0542
20	34	5	10	T(5, 10, 20)	0,0101	(1, 25)	0,0488	(1, 24)	0,0499	(7, 25)	53
20	34	6	9	T(6, 9, 20)	0,01	(1, 26)	0,0504	(1, 25)	0,0508	(8, 25)	0,0519
20	34	7	8	T(7, 8, 20)	0,0099	(1, 27)	0,0515	(1, 26)	0,0515	(8, 28)	0,0517

TAB. 8.14: Resultados para árvores $double\ broom$ ond
ed=20e $22\leq n\leq 34,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
20	35	1	15	T(1, 15, 20)	0,0116	(1, 21)	42	(1, 20)	0,0444	(6, 20)	0,0635
20	35	2	14	T(2, 14, 20)	11	(1, 22)	0,0431	(1, 21)	0,0454	(6, 21)	0,0594
20	35	3	13	T(3, 13, 20)	0,0105	(1, 23)	0,0444	(1, 22)	0,0464	(6, 22)	0,0558
20	35	4	12	T(4, 12, 20)	0,0101	(1, 24)	0,0457	(1, 23)	0,0475	(7, 23)	0,0538
20	35	5	11	T(5, 11, 20)	0,0098	(1, 25)	0,0472	(1, 24)	0,0485	(7, 28)	0,0522
20	35	6	10	T(6, 10, 20)	0,0096	(1, 26)	0,0487	(1, 25)	0,0495	(8, 25)	0,0514
20	35	7	9	T(7, 9, 20)	0,0095	(1, 27)	0,0501	(1, 26)	0,0502	(8, 34)	0,0506
20	35	8	8	T(8, 8, 20)	0,0095	(1, 28)	0,0507	(1, 27)	0,0506	(8, 31)	0,0507
20	36	1	16	T(1, 16, 20)	0,0114	(1, 21)	0,0411	(1, 20)	0,0435	(6, 20)	0,0634
20	36	2	15	T(2, 15, 20)	0,0107	(1, 22)	42	(1, 21)	0,0444	(6, 21)	59
20	36	3	14	T(3, 14, 20)	0,0102	(1, 23)	0,0431	(1, 22)	0,0453	(6, 22)	0,0551
20	36	4	13	T(4, 13, 20)	0,0098	(1, 24)	0,0444	(1, 23)	0,0463	(7, 23)	0,0535
20	36	5	12	T(5, 12, 20)	0,0095	(1, 25)	0,0457	(1, 24)	0,0473	(7, 24)	0,0515
20	36	6	11	T(6, 11, 20)	0,0093	(1, 26)	0,0471	(1, 25)	0,0482	(8, 25)	0,0508
20	36	7	10	T(7, 10, 20)	0,0091	(1, 27)	0,0486	(1, 26)	49	(9, 26)	0,0497
20	36	8	9	T(8, 9, 20)	0,0091	(1, 28)	0,0496	(1, 27)	0,0496	(9, 31)	0,0498
20	37	1	17	T(1, 17, 20)	0,0112	(1, 21)	0,0402	(1, 20)	0,0426	(6, 20)	0,0632
20	37	2	16	T(2, 16, 20)	0,0105	(1, 22)	0,0411	(1, 21)	0,0434	(6, 21)	0,0586
20	37	3	15	T(3, 15, 20)	0,01	(1, 23)	42	(1, 22)	0,0443	(6, 22)	0,0544
20	37	4	14	T(4, 14, 20)	0,0096	(1, 24)	0,0431	(1, 23)	0,0452	(7, 23)	0,0531
20	37	5	13	T(5, 13, 20)	0,0092	(1, 25)	0,0444	(1, 24)	0,0462	(7, 24)	0,0508
20	37	6	12	T(6, 12, 20)	9	(1, 26)	0,0457	(1, 25)	0,0471	(8, 28)	0,0502
20	37	7	11	T(7, 11, 20)	0,0088	(1, 27)	0,0471	(1, 26)	0,0479	(9, 26)	0,0493
20	37	8	10	T(8, 10, 20)	0,0087	(1, 28)	0,0483	(1, 27)	0,0485	(9, 29)	0,0489
20	37	9	9	T(9, 9, 20)	0,0087	(1, 29)	0,0489	(1, 28)	0,0489	(4, 37)	0,0489
20	38	1	18	T(1, 18, 20)	11	(1, 21)	0,0394	(1, 20)	0,0418	(6, 20)	63
20	38	2	17	T(2, 17, 20)	0,0103	(1, 22)	0,0402	(1, 21)	0,0426	(6, 21)	0,0581
20	38	3	16	T(3, 10, 20)	0,0098	(1, 23)	41	(1, 22)	0,0434	(7, 22)	0,0543
20	30	4	10	T(4, 15, 20) T(5, 14, 20)	0,0095	(1, 24) (1, 25)	42	(1, 23)	0,0445	(1, 29)	0,0527
20	20	6	14	T(5, 14, 20) T(6, 12, 20)	9	(1, 20)	0,0431	(1, 24) (1, 25)	46	(0, 24)	0,0303
20	38	7	12	T(0, 13, 20) T(7, 12, 20)	0,0088	(1, 20) (1, 27)	0,0444	(1, 25) (1, 26)	0.0468	(0, 31) (9, 26)	0.0497
20	38	8	11	T(1, 12, 20) T(8, 11, 20)	0.0085	(1, 21) (1, 28)	47	(1, 20) (1, 27)	0.0475	(9, 20)	48
20	38	9	10	T(0, 11, 20) T(9, 10, 20)	0.0084	(1, 20)	48	(1, 21) (1, 28)	48	(10, 21)	0.0482
20	39	1	19	T(1, 19, 20)	0.0108	(1, 23) (1, 21)	0.0386	(1, 20)	0.0411	(10, 00)	0.0628
20	39	2	18	T(2, 18, 20)	0.0101	(1, 22)	0.0393	(1, 21)	0.0418	(6, 21)	0.0576
20	39	3	17	T(3, 17, 20)	0.0096	(1, 23)	0.0401	(1, 22)	0.0426	(7, 22)	0.0542
20	39	4	16	T(4, 16, 20)	0.0091	(1, 24)	41	(1, 23)	0.0434	(7, 23)	0.0523
20	39	5	15	T(5, 15, 20)	0,0088	(1, 25)	42	(1, 24)	0,0442	(8, 24)	0,0503
20	39	6	14	T(6, 14, 20)	0,0085	(1, 26)	0,0431	(1, 25)	45	(8, 25)	0,0491
20	39	7	13	T(7, 13, 20)	0,0083	(1, 27)	0,0444	(1, 26)	0,0458	(9, 26)	0,0485
20	39	8	12	T(8, 12, 20)	0,0082	(1, 28)	0,0456	(1, 27)	0,0465	(10, 27)	0,0475
20	39	9	11	T(9, 11, 20)	0,0081	(1, 29)	0,0469	(1, 28)	0,0471	(10, 38)	0,0474
20	39	10	10	T(10, 10, 20)	0,0081	(1, 30)	0,0474	(1, 29)	0,0474	(3, 39)	0,0474
20	40	1	20	T(1, 20, 20)	0,0106	(1, 21)	0,0379	(1, 20)	0,0404	(6, 20)	0,0626
20	40	2	19	T(2, 19, 20)	0,0099	(1, 22)	0,0386	(1, 21)	0,0411	(6, 21)	0,0572
20	40	3	18	T(3, 18, 20)	0,0094	(1, 23)	0,0393	(1, 22)	0,0418	(7, 22)	0,0541
20	40	4	17	T(4, 17, 20)	9	(1, 24)	0,0401	(1, 23)	0,0425	(7, 23)	0,0519
20	40	5	16	T(5, 16, 20)	0,0086	(1, 25)	41	(1, 24)	0,0433	(8, 24)	0,0502
20	40	6	15	T(6, 15, 20)	0,0083	(1, 26)	42	(1, 25)	0,0441	(8, 25)	0,0486
20	40	7	14	T(7, 14, 20)	0,0081	(1, 27)	0,0431	(1, 26)	0,0449	(9, 39)	0,0481
20	40	8	13	T(8, 13, 20)	8	(1, 28)	0,0444	(1, 27)	0,0456	(10, 27)	0,0472
20	40	9	12	T(9, 12, 20)	0,0079	(1, 29)	0,0456	(1, 28)	0,0462	(10, 28)	0,0467
20	40	10	11	T(10, 11, 20)	0,0078	(1, 30)	0,0466	(1, 29)	0,0467	(11, 36)	0,0468

TAB. 8.15: Resultados para árvores $double\ broom$ ond
ed=20e $22\leq n\leq 35,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
21	23	1	2	$T(1 \ 2 \ 21)$	0.0187	(1 22)	0.0737	$(1 \ 21)$	0.0735	(3 21)	0.0754
21	20	1	3	T(1, 2, 21) T(1, 3, 21)	0.0174	(1, 22) (1, 22)	0.0676	(1, 21)	0.0678	(3, 21)	0.0714
21	24	2	2	T(2, 2, 21)	0.0173	(1, 22) (1, 23)	0.0702	(1, 21) (1, 22)	0.07	(3, 21)	0.0702
21	25	1	4	T(1, 4, 21)	0.0162	(1, 20)	0.0625	(1, 22)	0.0632	(3, 22) (4, 21)	0.0685
21	25	2	3	T(2, 3, 21)	0.016	(1, 22) (1, 23)	0.0657	(1, 21) (1, 22)	0.0654	(3, 21)	0.0664
21	26	1	5	T(1, 5, 21)	0.0153	(1, 20) (1, 22)	0.0584	(1, 22) (1, 21)	0.0593	(3, 21) (4, 25)	0.0663
21	26	2	4	T(2, 4, 21)	0.015	(1, 22) (1, 23)	0.0614	(1, 21) (1, 22)	0.0615	(1, 23)	0.0637
21	26	3	3	T(3, 3, 21)	0.0149	(1, 20)	0.0629	(1, 22) (1, 23)	0.0628	(2, 24)	0.0629
21	27	1	6	$T(1 \ 6 \ 21)$	0.0145	(1, 22)	0.0549	(1, 21)	0.0561	(5, 21)	0.0644
21	27	2	5	T(2, 5, 21)	0.0142	(1, 23)	0.0577	(1, 22)	0.0581	(4, 24)	0.0615
21	27	3	4	T(3, 4, 21)	0.014	(1, 24)	0.0598	(1, 23)	0.0596	(4, 25)	0.0602
21	28	1	7	T(1, 7, 21)	0.0138	(1, 22)	0.052	(1, 21)	0.0534	(5, 21)	0.0633
21	28	2	6	T(2, 6, 21)	0.0134	(1, 23)	0.0544	(1, 22)	0.0552	(5, 22)	0.0601
21	28	3	5	T(3, 5, 21)	0.0132	(1, 24)	0.0567	(1, 23)	0.0567	(5, 23)	0.0583
21	28	4	4	T(4, 4, 21)	0.0131	(1, 25)	0.0577	(1, 24)	0.0576	(6, 23)	0.0577
21	29	1	8	T(1, 8, 21)	0.0132	(1, 22)	0.0495	(1, 21)	0.051	(5, 28)	0.0622
21	29	2	7	T(2, 7, 21)	0,0128	(1, 23)	0,0517	(1, 22)	0,0527	(5, 24)	0,0588
21	29	3	6	T(3, 6, 21)	0,0125	(1, 24)	0,0538	(1, 23)	0,0542	(5, 24)	0,0567
21	29	4	5	T(4, 5, 21)	0,0124	(1, 25)	0,0554	(1, 24)	0,0553	(5, 25)	0,0557
21	30	1	9	T(1, 9, 21)	0,0127	(1, 22)	0,0473	(1, 21)	0,049	(5, 30)	0,0612
21	30	2	8	T(2, 8, 21)	0,0123	(1, 23)	0,0493	(1, 22)	0,0505	(5, 28)	0,0576
21	30	3	7	T(3, 7, 21)	0,012	(1, 24)	0,0513	(1, 23)	0,0519	(5, 28)	0,0552
21	30	4	6	T(4, 6, 21)	0,0118	(1, 25)	0,053	(1, 24)	0,0531	(6, 24)	0,0541
21	30	5	5	T(5, 5, 21)	0,0117	(1, 26)	0,0538	(1, 25)	0,0537	(1, 30)	0,0538
21	31	1	10	T(1, 10, 21)	0,0123	(1, 22)	0,0455	(1, 21)	0,0473	(5, 21)	0,0601
21	31	2	9	T(2, 9, 21)	0,0118	(1, 23)	0,0472	(1, 22)	0,0486	(6, 22)	0,0565
21	31	3	8	T(3, 8, 21)	0,0115	(1, 24)	0,0491	(1, 23)	0,0499	(6, 23)	0,0544
21	31	4	7	T(4, 7, 21)	0,0112	(1, 25)	0,0508	(1, 24)	0,0511	(6, 24)	0,053
21	31	5	6	T(5, 6, 21)	0,0111	(1, 26)	0,052	(1, 25)	0,0519	(6, 28)	0,0522
21	32	1	11	T(1, 11, 21)	0,0119	(1, 22)	0,0439	(1, 21)	0,0457	(6, 21)	0,0593
21	32	2	10	T(2, 10, 21)	0,0114	(1, 23)	0,0454	(1, 22)	0,047	(6, 22)	0,056
21	32	3	9	T(3, 9, 21)	0,011	(1, 24)	0,0471	(1, 23)	0,0482	(6, 23)	0,0536
21	32	4	8	T(4, 8, 21)	0,0108	(1, 25)	0,0488	(1, 24)	0,0493	(6, 30)	0,0519
21	32	5	7	T(5, 7, 21)	0,0106	(1, 26)	0,0502	(1, 25)	0,0502	(7, 25)	0,0509
21	32	6	6	T(6, 6, 21)	0,0106	(1, 27)	0,0508	(1, 26)	0,0507	(6, 30)	0,0508
21	33	1	12	T(1, 12, 21)	0,0116	(1, 22)	0,0424	(1, 21)	0,0444	(6, 21)	0,0591
21	33	2	11	T(2, 11, 21)	0,011	(1, 23)	0,0438	(1, 22)	0,0455	(6, 22)	0,0555
21	33	3	10	T(3, 10, 21)	0,0106	(1, 24)	0,0453	(1, 23)	0,0466	(6, 25)	0,0529
21	33	4	9	T(4, 9, 21)	0,0104	(1, 25)	0,0469	(1, 24)	0,0477	(6, 25)	0,0509
21	33	5	8	T(5, 8, 21)	0,0102	(1, 26)	0,0484	(1, 25)	0,0486	(7, 25)	0,05
21	33	6	7	T(6, 7, 21)	0,0101	(1, 27)	0,0493	(1, 26)	0,0493	(7, 33)	0,0495
21	34	1	13	T(1, 13, 21)	0,0112	(1, 22)	0,0412	(1, 21)	0,0431	(6, 21)	0,0588
21	34	2	12	T(2, 12, 21)	0,0107	(1, 23)	0,0424	(1, 22)	0,0442	(6, 22)	0,0551
21	34	3	11	T(3, 11, 21)	0,0103	(1, 24)	0,0438	(1, 23)	0,0452	(6, 30)	0,0522
21	34	4	10	T(4, 10, 21)	0,01	(1, 25)	0,0452	(1, 24)	0,0463	(7, 24)	0,0502
21	34	5	9	T(5, 9, 21)	0,0098	(1, 26)	0,0467	(1, 25)	0,0472	(7, 27)	0,0492
21	34	6	8	T(6, 8, 21)	0,0097	(1, 27)	0,0478	(1, 26)	0,0479	(7, 32)	0,0483
21	34	7	7	T(7, 7, 21)	0,0096	(1, 28)	0,0483	(1, 27)	0,0483	(1, 30)	0,0483

TAB. 8.16: Resultados para árvores double broom onde d=21e $23\leq n\leq 34,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
21	35	1	14	T(1, 14, 21)	0,011	(1, 22)	0,04	(1, 21)	0,042	(6, 21)	0,0585
21	35	2	13	T(2, 13, 21)	0,0104	(1, 23)	0,0411	(1, 22)	0,043	(6, 31)	0,0546
21	35	3	12	T(3, 12, 21)	0,01	(1, 24)	0,0424	(1, 23)	0,044	(6, 23)	0,0514
21	35	4	11	T(4, 11, 21)	0,0097	(1, 25)	0,0437	(1, 24)	0,0449	(7, 24)	0,0498
21	35	5	10	T(5, 10, 21)	0,0094	(1, 26)	0,0451	(1, 25)	0,0459	(7, 26)	0,0485
21	35	6	9	T(6, 9, 21)	0,0093	(1, 27)	0,0463	(1, 26)	0,0466	(8, 26)	0,0476
21	35	7	8	T(7, 8, 21)	0,0092	(1, 28)	0,0472	(1, 27)	0,0471	(8, 35)	0,0473
21	36	1	15	T(1, 15, 21)	0,0107	(1, 22)	0,039	(1, 21)	0,0411	(6, 21)	0,0582
21	36	2	14	T(2, 14, 21)	0,0102	(1, 23)	0,04	(1, 22)	0,0419	(6, 22)	0,0541
21	36	3	13	T(3, 13, 21)	0,0097	(1, 24)	0,0411	(1, 23)	0,0428	(6, 23)	0,0508
21	36	4	12	T(4, 12, 21)	0,0094	(1, 25)	0,0423	(1, 24)	0,0438	(7, 24)	0,0494
21	36	5	11	T(5, 11, 21)	0,0091	(1, 26)	0,0436	(1, 25)	0,0446	(7, 32)	0,0477
21	36	6	10	T(6, 10, 21)	0,009	(1, 27)	0,0449	(1, 26)	0,0454	(8, 26)	0,047
21	36	7	9	T(7, 9, 21)	0,0089	(1, 28)	0,0459	(1, 27)	0,046	(8, 36)	0,0464
21	36	8	8	T(8, 8, 21)	0,0088	(1, 29)	0,0464	(1, 28)	0,0464	(2, 35)	0,0464
21	37	1	16	T(1, 16, 21)	0,0105	(1, 22)	0,0381	(1, 21)	0,0402	(6, 21)	0,0579
21	37	2	15	T(2, 15, 21)	0,0099	(1, 23)	0,039	(1, 22)	0,041	(6, 22)	0,0536
21	37	3	14	T(3, 14, 21)	0,0095	(1, 24)	0,04	(1, 23)	0,0418	(7, 23)	0,0505
21	37	4	13	T(4, 13, 21)	0,0091	(1, 25)	0,0411	(1, 24)	0,0427	(7, 29)	0,0489
21	37	5	12	T(5, 12, 21)	0,0089	(1, 26)	0,0423	(1, 25)	0,0435	(7, 25)	0,047
21	37	6	11	T(6, 11, 21)	0,0087	(1, 27)	0,0435	(1, 26)	0,0443	(8, 35)	0,0465
21	37	7	10	T(7, 10, 21)	0,0085	(1, 28)	0,0447	(1, 27)	0,0449	(9, 27)	0,0456
21	37	8	9	T(8, 9, 21)	0,0085	(1, 29)	0,0454	(1, 28)	0,0454	(9, 32)	0,0455
21	38	1	17	T(1, 17, 21)	0,0103	(1, 22)	0,0372	(1, 21)	0,0394	(6, 21)	0,0575
21	38	2	16	T(2, 16, 21)	0,0097	(1, 23)	0,0381	(1, 22)	0,0401	(6, 22)	0,0531
21	38	3	15	T(3, 15, 21)	0,0093	(1, 24)	0,039	(1, 23)	0,0409	(7, 23)	0,0504
21	38	4	14	T(4, 14, 21)	0,0089	(1, 25)	0,04	(1, 24)	0,0417	(7, 31)	0,0485
21	38	5	13	T(5, 13, 21)	0,0086	(1, 26)	0,0411	(1, 25)	0,0425	(8, 25)	0,0467
21	38	6	12	T(6, 12, 21)	0,0084	(1, 27)	0,0423	(1, 26)	0,0433	(8, 38)	0,0459
21	38	7	11	T(7, 11, 21)	0,0083	(1, 28)	0,0434	(1, 27)	0,0439	(9, 27)	0,0452
21	38	8	10	T(8, 10, 21)	0,0082	(1, 29)	0,0443	(1, 28)	0,0444	(9, 31)	0,0447
21	38	9	9	T(9, 9, 21)	0,0081	(1, 30)	0,0447	(1, 29)	0,0447	(9, 33)	0,0447
21	39	1	18	T(1, 18, 21)	0,0101	(1, 22)	0,0365	(1, 21)	0,0386	(6, 21)	0,0572
21	39	2	17	T(2, 17, 21)	0,0095	(1, 23)	0,0372	(1, 22)	0,0393	(6, 22)	0,0526
21	39	3	16	T(3, 16, 21)	0,0091	(1, 24)	0,0381	(1, 23)	0,04	(7, 23)	0,0502
21	39	4	15	T(4, 15, 21)	0,0087	(1, 25)	0,039	(1, 24)	0,0408	(7, 24)	0,048
21	39	5	14	T(5, 14, 21)	0,0084	(1, 26)	0,04	(1, 25)	0,0416	(8, 25)	0,0465
21	39	6	13	T(6, 13, 21)	0,0082	(1, 27)	0,0411	(1, 26)	0,0423	(8, 26)	0,0454
21	39	7	12	T(7, 12, 21)	0,008	(1, 28)	0,0422	(1, 27)	0,043	(9, 27)	0,0448
21	39	8	11	T(8, 11, 21)	0,0079	(1, 29)	0,0432	(1, 28)	0,0435	(9, 28)	0,0439
21	39	9	10	T(9, 10, 21)	0,0079	(1, 30)	0,0439	(1, 29)	0,0439	(10, 37)	0,044
21	40	1	19	T(1, 19, 21)	0,0099	(1, 22)	0,0358	(1, 21)	0,0379	(6, 21)	0,0568
21	40	2	18	T(2, 18, 21)	0,0093	(1, 23)	0,0365	(1, 22)	0,0386	(6, 22)	0,0521
21	40	3	17	T(3, 17, 21)	0,0089	(1, 24)	0,0372	(1, 23)	0,0393	(7, 23)	0,05
21	40	4	16	1(4, 16, 21)	0,0085	(1, 25)	0,0381	(1, 24)	0,04	(7, 24)	0,0476
21	40	5	15	1(5, 15, 21)	0,0082	(1, 26)	0,039	(1, 25)	0,0407	(8, 25)	0,0462
21	40	6	14	1(0, 14, 21)	0,008	(1, 27)	0,04	(1, 26)	0,0414	(8, 26)	0,0448
21	40	(13	1(1, 13, 21)	0,0078	(1, 28)	0,0411	(1, 2i)	0,0421	(9, 21)	0,0443
21	40	8	12	T(8, 12, 21)	0,0077	(1, 29)	0,0421	(1, 28)	0,0427	(10, 28)	0,0430
21	40	9	11	1(9, 11, 21)	0,0076	(1, 30)	0,043	(1, 29)	0,0431	(10, 31)	0,0434
21	40	10	10	1(10, 10, 21)	0,0076	(1, <u>31</u>)	0,0434	(1, 3U)	0,0434	(1,30)	0,0434

TAB. 8.17: Resultados para árvores double broom onde d=21e $35\leq n\leq 40,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
22	24	1	2	T(1, 2, 22)	0,0172	(1, 23)	0,0677	(1, 22)	0,0676	(3, 22)	0,0691
22	25	1	3	T(1, 3, 22)	0,016	(1, 23)	0,0624	(1, 22)	0,0625	(3, 24)	0,0655
22	25	2	2	T(2, 2, 22)	0,0159	(1, 24)	0,0645	(1, 23)	0,0644	(6, 20)	0,0645
22	26	1	4	T(1, 4, 22)	0,015	(1, 23)	0,0579	(1, 22)	0,0584	(4, 22)	0,0629
22	26	2	3	T(2, 3, 22)	0,0148	(1, 24)	0,0605	(1, 23)	0,0603	(4, 23)	0,0611
22	27	1	5	T(1, 5, 22)	0,0141	(1, 23)	0,0541	(1, 22)	0,0549	(4, 25)	0,0608
22	27	2	4	T(2, 4, 22)	0,0139	(1, 24)	0,0567	(1, 23)	0,0567	(4, 24)	0,0586
22	27	3	3	T(3, 3, 22)	0,0138	(1, 25)	0,0579	(1, 24)	0,0578	(1, 26)	0,0579
22	28	1	6	T(1, 6, 22)	0,0134	(1, 23)	0,051	(1, 22)	0,052	(5, 22)	0,0592
22	28	2	5	T(2, 5, 22)	0,0131	(1, 24)	0,0533	(1, 23)	0,0537	(5, 23)	0,0566
22	28	3	4	T(3, 4, 22)	0,013	(1, 25)	0,0551	(1, 24)	0,0549	(4, 27)	0,0554
22	29	1	7	T(1, 7, 22)	0,0128	(1, 23)	0,0483	(1, 22)	0,0495	(5, 22)	0,058
22	29	2	6	T(2, 6, 22)	0,0125	(1, 24)	0,0505	(1, 23)	0,051	(5, 23)	0,0552
22	29	3	5	T(3, 5, 22)	0,0123	(1, 25)	0,0523	(1, 24)	0,0523	(5, 24)	0,0536
22	29	4	4	T(4, 4, 22)	0,0122	(1, 26)	0,0531	(1, 25)	0,0531	(5, 25)	0,0531
22	30	1	8	T(1, 8, 22)	0,0122	(1, 23)	0,046	(1, 22)	0,0473	(5, 26)	0,057
22	30	2	7	T(2, 7, 22)	0,0119	(1, 24)	0,048	(1, 23)	0,0488	(5, 30)	0,054
22	30	3	6	T(3, 6, 22)	0,0116	(1, 25)	0,0498	(1, 24)	0,05	(5, 26)	0,0522
22	30	4	5	T(4, 5, 22)	0,0115	(1, 26)	0,051	(1, 25)	0,0509	(5, 26)	0,0513
22	31	1	9	T(1, 9, 22)	0,0118	(1, 23)	0,0441	(1, 22)	0,0455	(5, 31)	0,0558
22	31	2	8	T(2, 8, 22)	0,0114	(1, 24)	0,0458	(1, 23)	0,0468	(5, 26)	0,0528
22	31	3	7	T(3, 7, 22)	0,0111	(1, 25)	0,0475	(1, 24)	0,048	(6, 24)	0,0508
22	31	4	6	T(4, 6, 22)	0,011	(1, 26)	0,0489	(1, 25)	0,049	(6, 25)	0,0499
22	31	5	5	T(5, 5, 22)	0,0109	(1, 27)	0,0495	(1, 26)	0,0495	(1, 27)	0,0495
22	32	1	10	T(1, 10, 22)	0,0114	(1, 23)	0,0423	(1, 22)	0,0439	(6, 22)	0,0551
22	32	2	9	T(2, 9, 22)	0,011	(1, 24)	0,0439	(1, 23)	0,0451	(6, 23)	0,0521
22	32	3	8	T(3, 8, 22)	0,0107	(1, 25)	0,0455	(1, 24)	0,0462	(6, 24)	0,0501
22	32	4	7	T(4, 7, 22)	0,0105	(1, 26)	0,0469	(1, 25)	0,0472	(6, 28)	0,0488
22	32	5	6	T(5, 6, 22)	0,0104	(1, 27)	0,0479	(1, 26)	0,0478	(6, 32)	0,0481
22	33	1	11	T(1, 11, 22)	0,011	(1, 23)	0,0408	(1, 22)	0,0424	(6, 22)	0,0547
22	33	2	10	T(2, 10, 22)	0,0106	(1, 24)	0,0422	(1, 23)	0,0435	(6, 23)	0,0515
22	33	3	9	T(3, 9, 22)	0,0103	(1, 25)	0,0437	(1, 24)	0,0446	(6, 33)	0,0493
22	33	4	8	T(4, 8, 22)	0,01	(1, 26)	0,0451	(1, 25)	0,0455	(6, 32)	0,0477
22	33	5	7	T(5, 7, 22)	0,0099	(1, 27)	0,0463	(1, 26)	0,0463	(7, 26)	0,0469
22	33	6	6	T(6, 6, 22)	0,0099	(1, 28)	0,0467	(1, 27)	0,0467	(7, 27)	0,0467
22	34	1	12	T(1, 12, 22)	0,0107	(1, 23)	0,0395	(1, 22)	0,0412	(6, 22)	0,0543
22	34	2	11	T(2, 11, 22)	0,0102	(1, 24)	0,0408	(1, 23)	0,0422	(6, 23)	0,051
22	34	3	10	T(3, 10, 22)	0,0099	(1, 25)	0,0421	(1, 24)	0,0432	(6, 33)	0,0486
22	34	4	9	T(4, 9, 22)	0,0097	(1, 26)	0,0434	(1, 25)	0,0441	(7, 25)	0,0468
22	34	5	8	T(5, 8, 22)	0,0095	(1, 27)	0,0447	(1, 26)	0,0449	(7, 26)	0,0461
22	34	6	7	T(6, 7, 22)	0,0094	(1, 28)	0,0454	(1, 27)	0,0454	(7, 34)	0,0456

TAB. 8.18: Resultados para árvores $double\ broom$ ond
ed=22e $24\leq n\leq 34,$ inserindo uma única arest
a(t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
22	35	1	13	T(1, 13, 22)	0,0104	(1, 23)	0,0383	(1, 22)	0,04	(6, 22)	0,0539
22	35	2	12	T(2, 12, 22)	0,0099	(1, 24)	0,0395	(1, 23)	0,0409	(6, 33)	0,0505
22	35	3	11	T(3, 11, 22)	0,0096	(1, 25)	0.0407	(1, 24)	0.0419	(6, 24)	0.0478
22	35	4	10	T(4, 10, 22)	0,0093	(1, 26)	0,0419	(1, 25)	0,0428	(7, 25)	0,0463
22	35	5	9	T(5, 9, 22)	0,0091	(1, 27)	0,0431	(1, 26)	0,0435	(7, 33)	0,0453
22	35	6	8	T(6, 8, 22)	0,009	(1, 28)	0,0441	(1, 27)	0,0441	(8, 27)	0,0445
22	35	7	7	T(7, 7, 22)	0,009	(1, 29)	0,0445	(1, 28)	0,0445	(8, 28)	0,0445
22	36	1	14	T(1, 14, 22)	0,0101	(1, 23)	0,0373	(1, 22)	0,039	(6, 26)	0,0535
22	36	2	13	T(2, 13, 22)	0,0097	(1, 24)	0,0383	(1, 23)	0,0399	(6, 23)	0,0499
22	36	3	12	T(3, 12, 22)	0,0093	(1, 25)	0,0394	(1, 24)	0,0407	(7, 24)	0,0472
22	36	4	11	T(4, 11, 22)	0,009	(1, 26)	0,0406	(1, 25)	0,0416	(7, 25)	0,0458
22	36	5	10	T(5, 10, 22)	0,0088	(1, 27)	0,0417	(1, 26)	0,0423	(7, 27)	0,0446
22	36	6	9	T(6, 9, 22)	0,0087	(1, 28)	0,0428	(1, 27)	0,043	(8, 27)	0,0439
22	36	7	8	T(7, 8, 22)	0,0086	(1, 29)	0,0434	(1, 28)	0,0434	(8, 29)	0,0435
22	37	1	15	T(1, 15, 22)	0,0099	(1, 23)	0,0363	(1, 22)	0,0381	(6, 22)	0,0531
22	37	2	14	T(2, 14, 22)	0,0094	(1, 24)	0,0372	(1, 23)	0,0389	(6, 23)	0,0494
22	37	3	13	T(3, 13, 22)	0,0091	(1, 25)	0,0383	(1, 24)	0,0397	(7, 24)	0,0469
22	37	4	12	T(4, 12, 22)	0,0088	(1, 26)	0,0393	(1, 25)	0,0405	(7, 37)	0,0454
22	37	5	11	T(5, 11, 22)	0,0085	(1, 27)	0,0404	(1, 26)	0,0412	(7, 26)	0,0438
22	37	6	10	T(6, 10, 22)	0,0084	(1, 28)	0,0415	(1, 27)	0,0419	(8, 27)	0,0433
22	37	7	9	T(7, 9, 22)	0,0083	(1, 29)	0,0423	(1, 28)	0,0424	(8, 34)	0,0426
22	37	8	8	T(8, 8, 22)	0,0083	(1, 30)	0,0427	(1, 29)	0,0426	(3, 35)	0,0427
22	38	1	16	T(1, 16, 22)	0,0097	(1, 23)	0,0354	(1, 22)	0,0372	(6, 22)	0,0527
22	38	2	15	T(2, 15, 22)	0,0092	(1, 24)	0,0363	(1, 23)	0,038	(6, 23)	0,0488
22	38	3	14	T(3, 14, 22)	0,0088	(1, 25)	0,0372	(1, 24)	0,0387	(7, 24)	0,0467
22	38	4	13	T(4, 13, 22)	0,0085	(1, 26)	0,0382	(1, 25)	0,0395	(7, 36)	0,0449
22	38	5	12	T(5, 12, 22)	0,0083	(1, 27)	0,0393	(1, 26)	0,0402	(8, 26)	0,0434
22	38	6	11	T(6, 11, 22)	0,0081	(1, 28)	0,0403	(1, 27)	0,0409	(8, 30)	0,0427
22	38	7	10	T(7, 10, 22)	0,008	(1, 29)	0,0412	(1, 28)	0,0414	(9, 28)	0,042
22	38	8	9	T(8, 9, 22)	0,0079	(1, 30)	0,0418	(1, 29)	0,0417	(9, 32)	0,0419
22	39	1	17	T(1, 17, 22)	0,0095	(1, 23)	0,0347	(1, 22)	0,0365	(6, 22)	0,0522
22	39	2	16	T(2, 16, 22)	0,009	(1, 24)	0,0354	(1, 23)	0,0372	(7, 23)	0,0484
22	39	3	15	T(3, 15, 22)	0,0086	(1, 25)	0,0363	(1, 24)	0,0379	(7, 24)	0,0464
22	39	4	14	T(4, 14, 22)	0,0083	(1, 26)	0,0372	(1, 25)	0,0386	(7, 25)	0,0444
22	39	0	13	1(0, 13, 22) T(6, 19, 20)	0,008	(1, 2i)	0,0382	(1, 20)	0,0393	(8, 20)	0,0431
22	39	6	12	1(6, 12, 22)	0,0079	(1, 28)	0,0392	(1, 27)	0,0399	(8, 38)	0,0422
22	39	6	10	T(1, 11, 22)	0,0077	(1, 29)	0,0401	(1, 28)	0,0400	(9, 28) (0, 26)	0.0410
22	39	0	10	T(8, 10, 22)	0,0077	(1, 30)	0,0408	(1, 29)	0,0409	(9, 30)	0,0411
22	39	9	9	T(9, 9, 22)	0,0076	(1, 31)	0,0411	(1, 30)	0,0411	(10, 30)	0,0411
22	40	1	18	T(1, 18, 22) T(2, 17, 22)	0,0093	(1, 23)	0.0247	(1, 22)	0.0264	(0, 22)	0.0492
22	40	2	16	T(2, 11, 22) T(2, 16, 22)	0.0084	(1, 24) (1, 25)	0.0254	(1, 23)	0.0271	(1, 23)	0,0463
22	40		15	T(3, 10, 22) T(4, 15, 22)	0.0081	(1, 20)	0.0363	(1, 24) (1, 25)	0.0377	(1, 24) (7, 25)	0.0402
22	40	- 4 5	14	T(4, 10, 22) T(5, 14, 22)	0.0078	(1, 20) (1, 27)	0.0372	(1, 20)	0.0384	(1, 20) (8.26)	0.044
22	40	6	13	T(6, 14, 22) T(6, 13, 22)	0.0076	(1, 21) (1, 28)	0.0372	(1, 20)	0.030	(8, 20)	0.0416
22	40	7	12	T(0, 10, 22) T(7, 12, 22)	0.0075	(1, 20)	0.0391	(1, 21) (1, 28)	0.0396	(0, 21) (9.28)	0.0411
22	40	8	11	T(8, 11, 22)	0.0074	(1, 23) (1, 30)	0.0399	(1, 20)	0.0401	(3, 20) (10, 29)	0.0405
22	40	9	10	T(9, 10, 22)	0.0074	(1, 30)	0.0404	(1, 20)	0.0404	(10, 25)	0.0405
	-10	_ <u> </u>	1 10	$\pm (0, \pm 0, \pm 2)$	3,0014	(1,01)	0,0404	(1,00)	0,0101	(10, 00)	0,0400

TAB. 8.19: Resultados para árvores double broom onde d=22e $35\leq n\leq 40,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{EH}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
30	32	1	2	T(1, 2, 30)	0,0096	(1, 31)	0,0383	(1, 30)	0,0383	(3, 30)	0,0387
30	33	1	3	T(1, 3, 30)	0,0091	(1, 31)	36	(1, 30)	0,0361	(4, 30)	0,0369
30	33	2	2	T(2, 2, 30)	0,0091	(1, 32)	0,0366	(1, 31)	0,0366	(1, 33)	0,0366
30	34	1	4	T(1, 4, 30)	0,0086	(1, 31)	34	(1, 30)	0,0341	(4, 34)	0,0354
30	34	2	3	T(2, 3, 30)	0,0086	(1, 32)	0,0347	(1, 31)	0,0347	(4, 31)	0,0349
30	35	1	5	T(1, 5, 30)	0,0082	(1, 31)	0,0322	(1, 30)	0,0324	(5, 30)	0,0343
30	35	2	4	T(2, 4, 30)	0,0082	(1, 32)	33	(1, 31)	33	(4, 35)	0,0335
30	35	3	3	T(3, 3, 30)	0,0081	(1, 33)	0,0333	(1, 32)	0,0333	(2, 34)	0,0333
30	36	1	6	T(1, 6, 30)	0,0079	(1, 31)	0,0306	(1, 30)	0,0309	(5, 33)	0,0333
30	36	2	5	T(2, 5, 30)	0,0078	(1, 32)	0,0314	(1, 31)	0,0315	(5, 31)	0,0324
30	36	3	4	T(3, 4, 30)	0,0077	(1, 33)	0,0319	(1, 32)	0,0318	(5, 32)	32
30	37	1	7	T(1, 7, 30)	0,0075	(1, 31)	0,0292	(1, 30)	0,0296	(6, 30)	0,0326
30	37	2	6	T(2, 6, 30)	0,0074	(1, 32)	0,03	(1, 31)	0,0301	(5, 32)	0,0315
30	37	3	5	T(3, 5, 30)	0,0074	(1, 33)	0,0305	(1, 32)	0,0305	(5, 37)	0,0309
30	37	4	4	T(4, 4, 30)	0,0073	(1, 34)	0,0307	(1, 33)	0,0307	(4, 34)	0,0307
30	38	1	8	T(1, 8, 30)	0,0072	(1, 31)	28	(1, 30)	0,0284	(6, 38)	0,0319
30	38	2	7	T(2, 7, 30)	0,0071	(1, 32)	0,0287	(1, 31)	0,0289	(6, 31)	0,0308
30	38	3	6	T(3, 6, 30)	7	(1, 33)	0,0293	(1, 32)	0,0293	(6, 32)	0,0301
30	38	4	5	T(4, 5, 30)	7	(1, 34)	0,0296	(1, 33)	0,0296	(5, 35)	0,0297
30	39	1	9	T(1, 9, 30)	7	(1, 31)	0,0269	(1, 30)	0,0274	(6, 39)	0,0313
30	39	2	8	T(2, 8, 30)	0,0069	(1, 32)	0,0276	(1, 31)	0,0279	(6, 35)	0,0302
30	39	3	7	T(3, 7, 30)	0,0068	(1, 33)	0,0282	(1, 32)	0,0283	(6, 39)	0,0294
30	39	4	6	T(4, 6, 30)	0,0067	(1, 34)	0,0286	(1, 33)	0,0286	(6, 33)	0,0289
30	39	5	5	T(5, 5, 30)	0,0067	(1, 35)	0,0287	(1, 34)	0,0287	(7, 33)	0,0287
30	40	1	10	T(1, 10, 30)	0,0068	(1, 31)	26	(1, 30)	0,0265	(7, 30)	0,0309
30	40	2	9	T(2, 9, 30)	0,0066	(1, 32)	0,0266	(1, 31)	0,0269	(7, 31)	0,0296
30	40	3	8	T(3, 8, 30)	0,0065	(1, 33)	0,0272	(1, 32)	0,0273	(6, 36)	0,0287
30	40	4	7	T(4, 7, 30)	0,0064	(1, 34)	0,0276	(1, 33)	0,0276	(6, 40)	0,0282
30	40	5	6	T(5, 6, 30)	0,0064	(1, 35)	0,0279	(1, 34)	0,0278	(6, 37)	0,0279

TAB. 8.20: Resultados para árvores double broom onde d=30e $32\leq n\leq 40,$ inserindo uma única aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	E_{fb}	$G + E_{fb}$	E_{hp}	$G + E_{hp}$	E_{he}	$G + E_{he}$
3	4	1	1	T(4, 3, 1)	0,5858	$\{(1, 3), (1, 4)\}$	2	$\{(1, 4), (2, 4)\}$	2	$\{(1, 3), *\}$	*
3	5	1	2	T(5, 3, 1)	0,5188	$\{(1, 4), (1, 5)\}$	2	$\{(1, 4), (1, 5)\}$	2	$\{(1, 3), *\}$	*
3	6	1	3	T(6, 3, 1)	0,4859	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,9139	$\{(1, 3), *\}$	*
3	6	2	2	T(6, 3, 2) T(7, 2, 1)	0,4384	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	1	$\{(1, 4), (2, 4)\}$	1
3	7	1	4	T(7, 3, 1) T(7, 3, 2)	0,4059	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,8074	$\{(1, 3), 1\}$	1
3	8	1	5	T(7, 3, 2) T(8, 3, 1)	0.4525	$\frac{1}{(1, 4), (2, 4)}$	1	$\{(1, 3), (2, 0)\}$	0.8377	$\{(1, 3), (2, 4)\}$	*
3	8	2	4	T(8, 3, 2)	0,3738	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,7715	$\{(1, 4), (2, 4)\}$	1
3	8	3	3	T(8, 3, 3)	0,3542	$\{(1, 6), (2, 7)\}$	0,7076	$\{(1, 6), (2, 7)\}$	0,7076	$\{(1, 5), (2, 5)\}$	0,6692
3	9	1	6	T(9, 3, 1)	0,4428	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,817	$\{(1, 3), *\}$	*
3	9	2	5	T(9, 3, 2)	0,3572	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,726	$\{(1, 4), (2, 4)\}$	1
3	9	3	4	T(9, 3, 3)	0,3272	$\{(1, 5), (2, 5)\}$	0,6465	$\{(1, 6), (2, 7)\}$	0,6368	$\{(1, 5), (2, 5)\}$	0,6465
3	10	1	6	T(10, 3, 1) T(10, 2, 2)	0,4355	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,8017	$\{(1, 3), {}^{*}\}$	1
3	10	2	5	T(10, 3, 2) T(10, 3, 3)	0,3431	$\frac{1(1, 4), (2, 4)}{1(1, 5), (2, 5)}$	0.6303	$\{(1, 5), (2, 0)\}$	0,0948	$\{(1, 4), (2, 4)\}$	0.6303
3	10	4	4	T(10, 3, 4)	0.2984	$\{(1, 7), (2, 8)\}$	0.5663	$\{(1, 7), (2, 8)\}$	0.5663	$\{(1, 6), (2, 6)\}$	0.5557
3	11	1	8	T(11, 3, 1)	0,4297	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,79	$\{(1, 3), *\}$	*
3	11	2	7	T(11, 3, 2)	0,3359	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,6719	$\{(1, 4), (2, 4)\}$	1
3	11	3	6	T(11, 3, 3)	0,2953	$\{(1, 5), (2, 5)\}$	0,618	$\{(1, 6), (2, 7)\}$	0,5615	$\{(1, 5), (2, 5)\}$	0,618
3	11	4	5	T(11, 3, 4)	0,2788	$\{(1, 6), (2, 6)\}$	0,5351	$\{(1, 7), (2, 8)\}$	0,5216	$\{(1, 6), (2, 6)\}$	0,5351
3	12	1	9	T(12, 3, 1)	0,4251	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7806	$\{(1, 3), *\}$	*
3	12	2	7	T(12, 3, 2) T(12, 3, 3)	0,3287	$\frac{\{(1, 4), (2, 4)\}}{\{(1, 5), (2, 5)\}}$	0.6084	$\{(1, 5), (2, 0)\}$	0,0344	$\{(1, 4), (2, 4)\}$	0.6084
3	12	4	6	T(12, 3, 3) T(12, 3, 4)	0.2645	$\{(1, 6), (2, 6)\}$	0.5194	$\{(1, 0), (2, 1)\}$	0.4904	$\{(1, 6), (2, 6)\}$	0.5194
3	12	5	5	T(12, 3, 5)	0,2583	$\{(1, 7), (2, 7)\}$	0,4803	$\{(1, 8), (2, 9)\}$	0,4765	$\{(1, 7), (2, 7)\}$	0,4803
3	13	1	10	T(13, 3, 1)	0,4213	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7729	$\{(1, 3), *\}$	*
3	13	2	9	T(13, 3, 2)	0,3229	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,6406	$\{(1, 4), (2, 4)\}$	1
3	13	3	8	T(13, 3, 3)	0,2771	$\{(1, 5), (2, 5)\}$	0,6006	$\{(1, 6), (2, 7)\}$	0,5212	$\{(1, 5), (2, 5)\}$	0,6006
3	13	4	7	T(13, 3, 4)	0,2536	$\{(1, 6), (2, 6)\}$	0,5071	$\{(1, 7), (2, 8)\}$	0,4673	$\{(1, 6), (2, 6)\}$	0,5071
3	13	5	6	T(13, 3, 5) T(14, 2, 1)	0,2434	$\frac{\{(1, 7), (2, 7)\}}{\{(1, 2), (1, 4)\}}$	0,4627	$\{(1, 8), (2, 9)\}$	0,4449	$\{(1, 7), (2, 7)\}$	0,4627
3	14	2	10	T(14, 3, 1) T(14, 3, 2)	0,4181	$\frac{\{(1, 3), (1, 4)\}}{\{(1, 4), (2, 4)\}}$	1	$\{(1, 4), (1, 5)\}$	0,7000	$\{(1, 3), 1\}$ $\{(1, 4), (2, 4)\}$	1
3	14	- 3	9	T(14, 3, 3)	0.2706	$\{(1, 5), (2, 5)\}$	0.5942	$\{(1, 6), (2, 7)\}$	0,5072	$\{(1, 5), (2, 5)\}$	0.5942
3	14	4	8	T(14, 3, 4)	0,245	$\{(1, 6), (2, 6)\}$	0,4972	$\{(1, 7), (2, 8)\}$	0,4494	$\{(1, 6), (2, 6)\}$	0,4972
3	14	5	7	T(14, 3, 5)	0,232	$\{(1, 7), (2, 7)\}$	0,4488	$\{(1, 8), (2, 9)\}$	0,4214	$\{(1, 7), (2, 7)\}$	0,4488
3	14	6	6	T(14, 3, 6)	0,228	$\{(1, 8), (2, 8)\}$	0,4248	$\{(1, 9), (2, 10)\}$	0,413	$\{(1, 8), (2, 8)\}$	0,4248
3	15	1	12	T(15, 3, 1)	0,4154	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7612	$\{(1, 3), *\}$	*
3	15	2	11	T(15, 3, 2)	0,3141	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,62	$\{(1, 4), (2, 4)\}$	1
3	15	3	10	T(15, 3, 3) T(15, 3, 4)	0,2652	$\{(1, 5), (2, 5)\}$	0,5889	$\{(1, 0), (2, 7)\}$	0,4958	$\{(1, 5), (2, 5)\}$	0,5889
3	15	5	8	T(15, 3, 4) T(15, 3, 5)	0.223	$\{(1, 0), (2, 0)\}$	0.4376	$\{(1, 7), (2, 9)\}$	0.4032	$\{(1, 0), (2, 0)\}$	0.4376
3	15	6	7	T(15, 3, 6)	0,2162	$\{(1, 8), (2, 8)\}$	0,4098	$\{(1, 9), (2, 10)\}$	0,3892	$\{(1, 8), (2, 8)\}$	0,4098
3	16	1	13	T(16, 3, 1)	0,4131	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7566	$\{(1, 3), *\}$	*
3	16	2	12	T(16, 3, 2)	0,3107	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,6121	$\{(1, 4), (2, 4)\}$	1
3	16	3	11	T(16, 3, 3)	0,2607	$\{(1, 5), (2, 5)\}$	0,5843	$\{(1, 6), (2, 7)\}$	0,4864	$\{(1, 5), (2, 5)\}$	0,5843
3	16	4 E	10	T(16, 3, 4) T(16, 2, 5)	0,2323	$\{(1, 6), (2, 6)\}$	0,4822	$\{(1, 7), (2, 8)\}$	0,4235	$\{(1, 6), (2, 6)\}$	0,4822
3	16	5	9	T(10, 3, 3) T(16, 3, 6)	0,2157	$\{(1, 7), (2, 7)\}$	0,4285	$\{(1, 8), (2, 9)\}$	0,3887	$\{(1, 1), (2, 1)\}$	0,4285
3	16	7	7	T(16, 3, 7)	0.2003	$\{(1, 9), (2, 9)\}$	0.3816	$\{(1, 10), (2, 10)\}$	0.3651	$\{(1, 9), (2, 9)\}$	0.3816
3	17	1	14	T(17, 3, 1)	0,411	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7526	$\{(1, 3), *\}$	*
3	17	2	13	T(17, 3, 2)	0,3077	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,6054	$\{(1, 4), (2, 4)\}$	1
3	17	3	12	T(17, 3, 3)	0,2569	$\{(1, 5), (2, 5)\}$	0,5804	$\{(1, 6), (2, 7)\}$	0,4783	$\{(1, 5), (2, 5)\}$	0,5804
3	17	4	11	T(17, 3, 4)	0,2275	$\{(1, 6), (2, 6)\}$	0,4763	$\{(1, 7), (2, 8)\}$	0,4138	$\{(1, 6), (2, 6)\}$	0,4763
3	17	0 6	10	T(17, 3, 5) T(17, 3, 6)	0.1004	$\frac{1(1, 1), (2, 1)}{\{(1, 8), (2, 8)\}}$	0,4200	$\{(1, 0), (2, 9)\}$	0.356	$\frac{1(1, 1), (2, 1)}{\{(1, 8), (2, 8)\}}$	0.3877
3	17	7	8	T(17, 3, 7)	0,1994	$\{(1, 9), (2, 9)\}$	0,3688	$\{(1, 10), (2, 10)\}$	0.3465	$\{(1, 9), (2, 9)\}$	0.3688
3	18	1	15	T(18, 3, 1)	0,4093	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7492	$\{(1, 3), *\}$	*
3	18	2	14	T(18, 3, 2)	0,3051	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,5996	$\{(1, 4), (2, 4)\}$	1
3	18	3	13	T(18, 3, 3)	0,2535	$\{(1, 5), (2, 5)\}$	0,577	$\{(1, 6), (2, 7)\}$	0,4715	$\{(1, 5), (2, 5)\}$	0,577
3	18	4	12	T(18, 3, 4)	0,2234	$\{(1, 6), (2, 6)\}$	0,4713	$\{(1, 7), (2, 8)\}$	0,4056	$\{(1, 6), (2, 6)\}$	0,4713
3	18	5	11	T(18, 3, 5) T(18, 2, 6)	0,2047	$\{(1, 7), (2, 7)\}$	0,4139	$\{(1, 8), (2, 9)\}$	0,3669	$\{(1, 7), (2, 7)\}$	0,4139
3	18	7	10	T(10, 3, 0) T(18, 3, 7)	0.1932	$\{(1, 0), (2, 0)\}$	0.3582	$\{(1, 9), (2, 10)\}$	0,3439	$\{(1, 0), (2, \delta)\}$	0.3582
3	18	8	8	T(18, 3, 7) T(18, 3, 8)	0.1809	$\frac{1}{(1, 3)}, (2, 3)}{(1, 10)}$	0.3468	$\{(1, 10), (2, 11)\}$	0.3277	$\{(1, 3), (2, 3)\}$	0.3468
3	19	1	16	T(19, 3, 1)	0,4077	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7461	$\{(1, 3), *\}$	*
3	19	2	15	T(19, 3, 2)	0,3029	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,5945	$\{(1, 4), (2, 4)\}$	1
3	19	3	14	T(19, 3, 3)	0,2507	$\{(1, 5), (2, 5)\}$	0,574	$\{(1, 6), (2, 7)\}$	0,4655	$\{(1, 5), (2, 5)\}$	0,574
3	19	4	13	T(19, 3, 4)	0,2198	$\{(1, 6), (2, 6)\}$	0,4669	$\{(1, 7), (2, 8)\}$	0,3985	$\{(1, 6), (2, 6)\}$	0,4669
3	19	5	12	T(19, 3, 5)	0,2004	$\{(1, 7), (2, 7)\}$	0,4082	$\{(1, 8), (2, 9)\}$	0,3586	$\{(1, 7), (2, 7)\}$	0,4082
3	19	6 7	11	1(19, 3, 6) T(19, 2, 7)	0.188	$\{(1, \delta), (2, \delta)\}$	0.372	$\{(1, 9), (2, 10)\}$	0,3339	$\{(1, \delta), (2, \delta)\}$	0.372
3	19	8	9	T(19, 3, 7) T(19, 3, 8)	0.1771	$\{(1, 10), (2, 3)\}$	0,3358	$\{(1, 11), (2, 12)\}$	0.3126	$\{(1, 10), (2, 3)\}$	0.3358
3	20	1	17	T(20, 3, 1)	0,4063	$\{(1, 3), (1, 4)\}$	1	$\{(1, 4), (1, 5)\}$	0,7434	$\{(1, 3), *\}$	*
3	20	2	16	T(20, 3, 2)	0,3009	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (2, 6)\}$	0,59	$\{(1, 4), (2, 4)\}$	1
3	20	3	15	T(20, 3, 3)	0,2481	$\{(1, 5), (2, 5)\}$	0,5713	$\{(1, 6), (2, 7)\}$	0,4603	$\{(1, 5), (2, 5)\}$	0,5713
3	20	4	14	T(20, 3, 4)	0,2167	$\{(1, 6), (2, 6)\}$	0,463	$\{(1, 7), (2, 8)\}$	0,3924	$\{(1, 6), (2, 6)\}$	0,463
3	20	5 6	13	T(20, 3, 5) T(20, 2, 6)	0,1966	$\{(1, 7), (2, 7)\}$	0,4032	$\{(1, 8), (2, 9)\}$	0,3514	$\{(1, 7), (2, 7)\}$	0,4032
3	<u>⊿0</u> 20	7	12	T(20, 3, 6) T(20, 3, 7)	0,1835 0.1752	$\frac{1(1, 0), (2, 0)}{\{(1, 0), (2, 0)\}}$	0.3038	$\{(1, 9), (2, 10)\}$	0,3233	$\{(1, 0), (2, 0)\}$	0.3417
3	20	8	10	T(20, 3, 8)	0,1705	$\{(1, 10), (2, 10)\}$	0,3265	$\{(1, 11), (2, 12)\}$	0,3002	$\{(1, 10), (2, 10)\}$	0,3265
3	20	9	9	T(20, 3, 9)	0,169	$\{(1, 11), (2, 11)\}$	0,3181	$\{(1, 12), (2, 13)\}$	0,2974	$\{(1, 11), (2, 11)\}$	0,3181

TAB. 8.21: Resultados para árvores double broom onde $d=3,\,4\leq n\leq 20,$ inserindo conjuntos de duas arestas (t=2)

APÊNDICE 2: EXPERIMENTOS EM ÁRVORES BROOM

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{HE}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
3	5	1	2	T(5, 3, 1)	0.5188	(1, 4)	0.8299	(1,3)	1	(1,3)	1
3	6	1	3	T(6, 3, 1)	0.4859	(1, 4)	0.7639	(1,3)	1	(1,3)	1
4	7	1	3	T(7, 4, 1)	0.2955	(1, 5)	0.6086	(1, 4)	0.7269	(1, 4)	0,7269
4	8	1	4	T(8, 4, 1)	0.2774	(1, 5)	0.5607	(1, 4)	0.7029	(1, 4)	0,7029
5	9	1	4	T(9, 5, 1)	0.1876	(1, 6)	0.4484	(1, 5)	0.53	(1, 5)	0,53
5	10	1	5	T(10, 5, 1)	0.1775	(1, 6)	0.4175	(1, 5)	0,5085	(1, 5)	0,5085
6	11	1	5	T(11, 6, 1)	0.1288	(1,7)	0.3391	(1, 6)	0.3959	(2, 6)	0,4419
6	12	1	6	T(12, 6, 1)	0.1227	(1, 7)	0.319	(1, 6)	0.3799	(2, 6)	0,4249
7	13	1	6	T(13, 7, 1)	0.0936	(1, 8)	0.2636	(1,7)	0.304	(2,7)	0,3612
7	14	1	7	T(14, 7, 1)	0.0897	(1,8)	0.25	(1,7)	0.2924	(2,7)	0,3474
8	15	1	7	T(15, 7, 1)	0.071	(1, 9)	0.21	(1,8)	0.2394	(2,8)	0,2878
8	16	1	8	T(16, 7, 1)	0.0683	(1, 9)	0.2005	(1,8)	0.2309	(2,8)	0,2777
9	17	1	8	T(17, 9, 1)	0.0556	(1, 10)	0.1709	(1,9)	0.1928	(3,9)	0,2449
9	18	1	9	T(18, 9, 1)	0.0538	(1, 10)	0.164	(1,9)	0.1805	(3, 9)	0,2377
10	19	1	9	T(19, 10, 1)	0.0447	(1, 11)	0.1415	(1, 10)	0.1583	(3, 10)	0,2164
10	20	1	10	T(20, 10, 1) T(21, 11, 1)	0.0434	(1, 11)	0.1304	(1, 10)	0.1030	(3, 10)	0,2096
11	21	1	10	T(21, 11, 1) T(22, 11, 1)	0,0308	(1, 12)	0,119	(1, 11)	0,1321	(3, 11)	0,1803
11	22	1	11	T(22, 11, 1) T(22, 11, 1)	0,0357	(1, 12)	0,1151	(1, 11)	0,1284	(3, 11)	0,1755
12	23	1	11	T(23, 11, 1) T(24, 12, 1)	0,0307	(1, 13)	0,1014	(1, 12)	0,1118	(4, 12)	0,1520
12	24	1	12	T(24, 12, 1) T(25, 12, 1)	0,0233	(1, 10)	0.0874	(1, 12)	0,10057	(4, 12) (4, 13)	0,1301
13	20	1	12	T(25, 12, 1) T(26, 13, 1)	0.0254	(1, 14)	0.085	(1, 13)	0.0934	(4, 13) (4, 13)	0,1444
14	20	1	13	T(20, 10, 1) T(27, 13, 1)	0.0224	(1, 14) (1, 15)	0.0761	(1, 10)	0.0829	(4, 10) (4, 14)	0.1223
14	28	1	14	T(28, 14, 1)	0.0219	(1, 10)	0.0742	(1, 14)	0.081	(1, 11) (4 14)	0.1199
15	29	1	14	T(29, 14, 1)	0.0194	(1, 10)	0.0668	(1, 15)	0.0724	(4, 15)	0.1038
15	30	1	15	T(30, 15, 1)	0,019	(1, 16)	0,0652	(1, 15)	0,0709	(4, 15)	0,1019
16	31	1	15	T(31, 15, 1)	0,017	(1, 17)	0,0592	(1, 16)	0,0638	(5, 16)	0,0979
16	32	1	16	T(32, 16, 1)	0,0167	(1, 17)	0,0578	(1, 16)	0,0625	(5, 16)	0,0979
17	33	1	16	T(33, 16, 1)	0,015	(1, 18)	0,0527	(1, 17)	0,0567	(5, 17)	0,0865
17	34	1	17	T(34, 17, 1)	0,0147	(1, 18)	0,0516	(1, 17)	0,0556	(5, 17)	0,0856
18	35	1	17	T(35, 17, 1)	0,0134	(1, 19)	0,0473	(1, 18)	0,0506	(5, 18)	0,0753
18	36	1	18	T(36, 18, 1)	0,0131	(1, 19)	0,0463	(1, 18)	0,0497	(5, 18)	0,0744
19	37	1	18	T(37, 18, 1)	0,012	(1, 20)	0,0426	(1, 19)	0,0455	(6, 19)	0,0681
19	38	1	19	T(38, 19, 1)	0,0118	(1, 20)	0,0418	(1, 19)	0,0447	(6, 19)	0,0681
20	39	1	19	T(39, 19, 1)	0,0108	(1, 21)	0,0386	(1, 20)	0,0411	(6, 20)	0,0628
20	40	1	20	T(40, 20, 1)	0,0106	(1, 21)	0,0379	(1, 20)	0,0404	(6, 20)	0,0626
21	41	1	20	T(41, 20, 1)	0,0098	(1, 22)	0,0352	(1, 21)	0,0373	(6, 21)	0,0564
21	42	1	21	T(42, 21, 1)	0,0096	(1, 22)	0,0346	(1, 21)	0,0367	(6, 21)	0,056
22	43	1	21	T(43, 21, 1)	0,0089	(1, 23)	0,0321	(1, 22)	0,034	(6, 22)	0,0505
22	44	1	22	T(44, 22, 1)	0,0087	(1, 23)	0,0316	(1, 22)	0,0335	(7, 22)	0,0501
23	45	1	22	1(45, 22, 1)	0,0081	(1, 24)	0,0295	(1, 23)	0,0311	(7, 23)	0,0471
23	40	1	23	1(40, 23, 1) T $(47, 22, 1)$	0,008	(1, 24)	0,029	(1, 23)	0,0307	(7, 23)	0,0471
24	47	1	23	T(47, 23, 1) T(48, 24, 1)	0,0074	(1, 25)	0,0271	(1, 24)	0,0280	(7, 24)	0,0434
24	40	1	24	T(40, 24, 1) T(40, 24, 1)	0,0073	(1, 20)	0,0203	(1, 24) (1, 25)	0,0264	(7, 24) (7, 25)	0,0432
25	50	1	25	T(50, 25, 1)	0.0067	(1, 20) (1, 26)	0.0247	(1, 25)	0.026	(7, 25)	0.0393
26	51	1	25	T(51, 25, 1)	0.0063	(1, 20) (1, 27)	0.0232	(1, 20)	0.0244	(8, 26)	0,0365
26	52	1	26	T(52, 26, 1)	0,0062	(1, 27)	0,0229	(1, 26)	0,0241	(8, 26)	0,0365
27	53	1	26	T(53, 26, 1)	0,0058	(1, 28)	0,0216	(1, 27)	0,0226	(8, 27)	0,0342
27	54	1	27	T(54, 27, 1)	0,0058	(1, 28)	0,0213	(1, 27)	0,0224	(8, 27)	0,0341
28	55	1	27	T(55, 27, 1)	0,0054	(1, 29)	0,0201	(1, 28)	0,0211	(8, 28)	0,0317
28	56	1	28	T(56, 28, 1)	0,0054	(1, 29)	0,0199	(1, 28)	0,0208	(8, 28)	0,0316
29	57	1	28	T(57, 28, 1)	0,0051	(1, 30)	0,0188	(1, 29)	0,0196	(8, 29)	0,0293
29	58	1	29	T(58, 29, 1)	0,005	(1, 30)	0,0186	(1, 29)	0,0194	(8, 29)	0,0291
30	59	1	29	T(59, 29, 1)	0,0047	(1, 31)	0,0176	(1, 30)	0,0183	(9, 30)	0,0275
30	60	1	30	T(60, 30, 1)	0,0047	(1, 31)	0,0174	(1, 30)	0,0181	(9, 30)	0,0275
31	61	1	30	T(61, 30, 1)	0,0044	(1, 32)	0,0165	(1, 31)	0,0172	(9, 59)	0,0258
31	62	1	31	T(62, 31, 1)	0,0044	(1, 32)	0,0163	(1, 31)	0,017	(9, 31)	0,0258
32	63	1	31	T(63, 31, 1)	0,0041	(1, 33)	0,0155	(1, 32)	0,0161	(9, 32)	0,0241
32	64	1	32	T(64, 32, 1)	0,0041	(1, 33)	0,0153	(1, 32)	0,016	(9, 32)	0,0241
33	65	1	32	T(65, 32, 1)	0,0039	(1, 34)	0,0146	(1, 33)	0,0152	(10, 33)	0,0226
33	65	1	33	1(66, 33, 1)	0,0039	(1, 34)	0,0144	(1, 33)	0,015	(10, 33)	0,0226
34	67	1	33	1(67, 33, 1)	0,0037	(1, 35)	0,0138	(1, 34)	0,0143	(10, 34)	0,0214
34	60	1	34	T(08, 34, 1) T(60, 24, 1)	0,0036	(1, 30) (1, 26)	0.0130	(1, 34) (1, 25)	0.0142	(10, 34) (10, 25)	0,0214
20	70	1	34	T(03, 34, 1) T(70, 25, 1)	0,0030	(1, 30)	0.0120	(1, 30)	0.0134	(10, 30)	0.0202
1 30	10	1 ±	00	1 + (10, 30, 1)	0,0034	(1, 30)	0,0140	1 (1, 30)	0,0104	1 (10, 30)	0,0401

TAB. 8.22: Resultados comparativos para árvores broom onde $d=\lceil\frac{n}{2}\rceil,\,3\leq n\leq 70,$ inserindo uma aresta (t=1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{HE}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
36	71	1	35	T(71, 35, 1)	0,0033	(1, 37)	0,0123	(1, 36)	0,0127	(10, 36)	0,019
36	72	1	36	T(72, 36, 1)	0,0032	(1, 37)	0,0122	(1, 36)	0,0126	(10, 36)	0,0189
37	73	1	36	T(73, 36, 1)	0,0031	(1, 38)	0,0117	(1, 37)	0,0121	(11, 37)	0,018
37	74	1	37	T(74, 37, 1)	0,0031	(1, 38)	0,0115	(1, 37)	0,012	(11, 37)	0,018
38	75	1	37	T(75, 37, 1)	0,0029	(1, 39)	0,0111	(1, 38)	0,0114	(11, 38)	0,0171
38	76	1	38	T(76, 38, 1)	0,0029	(1, 39)	0,011	(1, 38)	0,0113	(11, 71)	0,0171
39	70	1	38	1(77, 38, 1) T(78, 20, 1)	0,0028	(1, 40)	0,0105	(1, 39)	0,0109	(11, 39)	0,0162
39	70	1	39	T(70, 39, 1) T(70, 20, 1)	0,0028	(1, 40)	0,0104	(1, 39)	0,0108	(11, 39) (12, 40)	0,0162
40	80	1	40	T(80, 40, 1)	0.0020	(1, 41)	0,0199	(1, 40) (1, 40)	0.0102	(12, 40) (12, 40)	0.0153
41	81	1	40	T(81, 40, 1)	0.0025	(1, 11) (1, 42)	0.0095	(1, 41)	0.0098	(12, 10) (12, 41)	0.0147
41	82	1	41	T(82, 41, 1)	0,0025	(1, 42)	0,0094	(1, 41)	0,0098	(12, 41)	0,0146
42	83	1	41	T(83, 41, 1)	0,0024	(1, 43)	0,0091	(1, 42)	0,0094	(12, 44)	0,014
42	84	1	42	T(84, 42, 1)	0,0024	(1, 43)	0,009	(1, 42)	0,0093	(12, 42)	0,014
43	85	1	42	T(85, 42, 1)	0,0023	(1, 44)	0,0087	(1, 43)	0,0089	(12, 43)	0,0133
43	86	1	43	T(86, 43, 1)	0,0023	(1, 44)	0,0086	(1, 43)	0,0089	(12, 43)	0,0133
44	87	1	43	T(87, 43, 1)	0,0022	(1, 45)	0,0083	(1, 44)	0,0085	(13, 44)	0,0127
44	88	1	44	T(88, 44, 1)	0,0022	(1, 45)	0,0082	(1, 44)	0,0085	(13, 44)	0,0127
45	89	1	44	T(89, 44, 1)	0,0021	(1, 46)	0,0079	(1, 45)	0,0082	(13, 45)	0,0122
45	90	1	45	T(90, 45, 1) T(01, 45, 1)	0,0021	(1, 46)	0,0079	(1, 45)	0,0081	(13, 45)	0,0121
40	91	1	40	T(91, 45, 1) T(92, 46, 1)	0,002	(1, 47)	0,0076	(1, 40)	0,0078	(13, 40) (13, 46)	0.0116
40	92	1	40	T(92, 40, 1) T(93, 46, 1)	0.0019	(1, 47) (1, 48)	0,0073	(1, 40) (1, 47)	0.0075	(13, 40) (13, 47)	0.0111
47	94	1	40	T(94, 47, 1)	0.0019	(1, 40) (1, 48)	0.0072	(1, 47)	0.0074	(10, 47) (14, 47)	0.0111
48	95	1	47	T(95, 47, 1)	0,0018	(1, 49)	0,007	(1, 48)	0,0072	(14, 48)	0,0107
48	96	1	48	T(96, 48, 1)	0,0018	(1, 49)	0,0069	(1, 48)	0,0071	(14, 48)	0,0107
49	97	1	48	T(97, 48, 1)	0,0017	(1, 50)	0,0067	(1, 49)	0,0069	(14, 64)	0,0102
49	98	1	49	T(98, 49, 1)	0,0017	(1, 50)	0,0067	(1, 49)	0,0068	(14, 77)	0,0102
50	99	1	49	T(99, 49, 1)	0,0017	(1, 51)	0,0064	(1, 50)	0,0066	(14, 50)	0,0098
50	100	1	50	T(100, 50, 1)	0,0017	(1, 51)	0,0064	(1, 50)	0,0066	(14, 50)	0,0098
51	101	1	50	T(101, 50, 1)	0,0016	(1, 52)	0,0062	(1, 51)	0,0064	(15, 51)	0,0094
51	102	1	51	T(102, 51, 1)	0,0016	(1, 52)	0,0062	(1, 51)	0,0063	(15, 51)	0,0094
52	103	1	51	T(103, 51, 1)	0,0016	(1, 53)	0,006	(1, 52)	0,0061	(15, 52)	0,0091
52	104	1	52	T(104, 52, 1) T(105, 52, 1)	0,0015	(1, 55)	0,0059	(1, 52) (1, 52)	0,0050	(15, 52) (15, 52)	0,0091
53	105	1	53	T(105, 52, 1) T(106, 53, 1)	0,0015	(1, 54)	0,0057	(1, 53)	0,0059	(15, 53)	0,0087
54	107	1	53	T(107, 53, 1)	0.0014	(1, 54) (1, 55)	0.0055	(1, 50)	0.0057	(15, 56)	0.0084
54	108	1	54	T(108, 54, 1)	0.0014	(1, 55)	0,0055	(1, 54)	0.0056	(15, 54)	0.0084
55	109	1	54	T(109, 54, 1)	0,0014	(1, 56)	0,0053	(1, 55)	0,0055	(16, 55)	0,0081
55	110	1	55	T(110, 55, 1)	0,0014	(1, 56)	0,0053	(1, 55)	0,0054	(16, 55)	0,0081
56	111	1	55	T(111, 55, 1)	0,0013	(1, 57)	0,0051	(1, 56)	0,0053	(16, 56)	0,0078
56	112	1	56	T(112, 56, 1)	0,0013	(1, 57)	0,0051	(1, 56)	0,0052	(16, 110)	0,0078
57	113	1	56	T(113, 56, 1)	0,0013	(1, 58)	0,005	(1, 57)	0,0051	(16, 57)	0,0075
57	114	1	57	T(114, 57, 1)	0,0013	(1, 58)	0,0049	(1, 57)	0,0051	(16, 57)	0,0075
58	115	1	57	T(115, 57, 1)	0,0012	(1, 59)	0,0048	(1, 58)	0,0049	(17, 58)	0,0073
50 50	110	1	50	T(110, 58, 1) T(117, 59, 1)	0.0012	(1, 59)	0,0046	(1, 58) (1, 50)	0.0049	(17, 50)	0,0073
59	117	1	50	T(117, 50, 1) T(118, 50, 1)	0,0012	(1, 00)	0,0040	(1, 59)	0,0047	(17, 59) (17, 59)	0,007
60	119	1	59	T(119, 59, 1)	0.0012	(1, 60)	0.0045	(1, 60)	0,0046	(17, 89)	0,0068
60	120	1	60	T(120, 60, 1)	0,0012	(1, 61)	0,0045	(1, 60)	0,0046	(17, 60)	0,0068
61	121	1	60	T(121, 60, 1)	0,0011	(1, 62)	0,0043	(1, 61)	0,0044	(17, 61)	0,0066
61	122	1	61	T(122, 61, 1)	0,0011	(1, 62)	0,0043	(1, 61)	0,0044	(17, 61)	0,0066
62	123	1	61	T(123, 61, 1)	0,0011	(1, 63)	0,0042	(1, 62)	0,0043	(18, 62)	0,0064
62	124	1	62	T(124, 62, 1)	0,0011	(1, 63)	0,0042	(1, 62)	0,0043	(18, 62)	0,0064
63	125	1	62	T(125, 62, 1)	0,0011	(1, 64)	0,0041	(1, 63)	0,0042	(18, 63)	0,0062
63	126	1	63	T(126, 63, 1)	0,001	(1, 64)	0,0041	(1, 63)	0,0041	(18, 63)	0,0062
64	127	1	64	T(127, 63, 1)	0,001	(1, 65)	0,004	(1, 64)	0,004	(18, 64)	0,006
65	120	1	64	T(120, 04, 1) T(120, 64, 1)	0.001	(1, 00)	0.0039	(1, 04) (1, 65)	0.004	(10, 04)	0.0058
65	129	1	65	T(120, 04, 1) T(130, 65, 1)	0.001	(1, 00)	0.0038	(1, 05) (1.65)	0.0039	(10, 00)	0.0058
66	131	1	65	T(131, 65, 1)	0.001	(1, 60)	0.0037	(1, 66)	0.0038	(19, 66)	0.0056
66	132	1	66	T(132, 66, 1)	0,001	(1, 67)	0,0037	(1, 66)	0,0038	(19, 66)	0,0056
67	133	1	66	T(133, 66, 1)	0,0009	(1, 68)	0,0036	(1, 67)	0,0037	(19, 75)	0,0055
67	134	1	67	T(134, 67, 1)	0,0009	(1, 68)	0,0036	(1, 67)	0,0037	(19, 121)	0,0054
68	135	1	67	T(135, 67, 1)	0,0009	(1, 69)	0,0035	(1, 68)	0,0036	(19, 68)	0,0053
68	136	1	68	T(136, 68, 1)	0,0009	(1, 69)	0,0035	(1, 68)	0,0036	(19, 68)	0,0053
69	137	1	68	T(137, 68, 1)	0,0009	(1, 70)	0,0034	$(1, \overline{69})$	0,0035	(20, 69)	0,0051
69	138	1	69	T(138, 69, 1)	0,0009	(1, 70)	0,0034	(1, 69)	0,0035	(20, 69)	0,0051
70	139	1	69	T(139, 69, 1)	0,0009	(1, 71)	0,0033	(1, 70)	0,0034	(20, 70)	0,005
10	140	1	1 10	1(140, (0, 1))	0,0008	(1, (1)	0,0033	(1, 10)	0,0034	(20,70)	0,000

TAB. 8.23: Resultados comparativos para árvores broom onde $d = \lceil \frac{n}{2} \rceil$, $71 \le n \le 140$, inserindo uma aresta (t = 1)

d	n	k	l	G	$\lambda_2(G)$	e_{HP}	$\lambda_2(G + e_{HP})$	e_{HE}	$\lambda_2(G + e_{HE})$	e_{FB}	$\lambda_2(G + e_{FB})$
71	141	1	70	T(141, 70, 1)	0,0008	(1, 72)	0,0032	(1, 71)	0,0033	(20, 71)	0,0049
71	142	1	71	T(142, 71, 1)	0,0008	(1, 72)	0,0032	(1, 71)	0,0033	(20, 71)	0,0048
72	143	1	71	T(143, 71, 1)	0,0008	(1, 73)	0,0031	(1, 72)	0,0032	(20, 72)	0,0047
72	144	1	72	T(144, 72, 1)	0,0008	(1, 73)	0,0031	(1, 72)	0,0032	(20, 72)	0,0047
73	145	1	72	T(145, 72, 1)	0,0008	(1, 74)	0,003	(1, 73)	0,0031	(21, 73)	0,0046
73	146	1	73	T(146, 73, 1)	0,0008	(1, 74)	0,003	(1, 73)	0,0031	(21, 73)	0,0046
74	147	1	73	T(147, 73, 1)	0,0008	(1, 75)	0,003	(1, 74)	0,003	(21, 79)	0,0045
74	148	1	74	T(148, 74, 1)	0,0008	(1, 75)	0,0029	(1, 74)	0,003	(21, 126)	0,0045
75	149	1	74	T(149, 74, 1)	0,0007	(1, 76)	0,0029	(1, 75)	0,0029	(21, 75)	0,0043
75	150	1	75	T(150, 75, 1)	0,0007	(1, 76)	0,0029	(1, 75)	0,0029	(21, 75)	0,0043
76	151	1	75	T(151, 75, 1)	0,0007	(1, 77)	0,0028	(1, 76)	0,0029	(22, 76)	0,0042
76	152	1	76	T(152, 76, 1)	0,0007	(1, 77)	0,0028	(1, 76)	0,0028	(22, 76)	0,0042
77	153	1	76	T(153, 76, 1)	0,0007	(1, 78)	0,0027	(1, 77)	0,0028	(22, 77)	0,0041
77	154	1	77	T(154, 77, 1)	0,0007	(1, 78)	0,0027	(1, 77)	0,0028	(22, 77)	0,0041
78	155	1	77	T(155, 77, 1)	0,0007	(1, 79)	0,0027	(1, 78)	0,0027	(22, 97)	0,004
78	156	1	78	T(156, 78, 1)	0,0007	(1, 79)	0,0027	(1, 78)	0,0027	(22, 78)	0,004
79	157	1	78	T(157, 78, 1)	0,0007	(1, 80)	0,0026	(1, 79)	0,0026	(22, 79)	0,0039
79	158	1	79	T(158, 79, 1)	0,0007	(1, 80)	0,0026	(1, 79)	0,0026	(22, 79)	0,0039
80	159	1	79	T(159, 79, 1)	0,0007	(1, 81)	0,0025	(1, 80)	0,0026	(23, 80)	0,0038
80	160	1	80	T(160, 80, 1)	0,0006	(1, 81)	0,0025	(1, 80)	0,0026	(23, 80)	0,0038
81	161	1	80	T(161, 80, 1)	0,0006	(1, 82)	0,0025	(1, 81)	0,0025	(23, 81)	0,0037
81	162	1	81	T(162, 81, 1)	0,0006	(1, 82)	0,0025	(1, 81)	0,0025	(23, 140)	0,0037
82	163	1	81	T(163, 81, 1)	0,0006	(1, 83)	0,0024	(1, 82)	0,0025	(23, 82)	0,0036
82	164	1	82	T(164, 82, 1)	0,0006	(1, 83)	0,0024	(1, 82)	0,0024	(23, 82)	0,0036
83	165	1	82	T(165, 82, 1)	0,0006	(1, 84)	0,0024	(1, 83)	0,0024	(24, 83)	0,0035
83	165	1	83	T(166, 83, 1) T(167, 82, 1)	0,0006	(1, 84)	0,0023	(1, 83)	0,0024	(24, 83)	0,0035
84	169	1	84	T(107, 83, 1) T(169, 94, 1)	0,0006	(1, 85)	0,0023	(1, 84)	0,0023	(24, 84)	0,0035
95	160	1	04 94	T(100, 04, 1) T(160, 94, 1)	0,0000	(1, 85)	0,0023	(1, 84)	0,0023	(24, 84) (24, 100)	0,0033
85	170	1	85	T(170, 85, 1)	0,0006	(1, 80)	0,0022	(1, 85)	0,0023	(24, 109) (24, 158)	0.0034
86	171	1	85	T(171, 85, 1)	0.0006	(1, 80)	0.0022	(1, 86)	0.0022	(24, 86)	0.0033
86	172	1	86	T(172, 86, 1)	0.0006	(1, 87)	0.0022	(1, 86)	0.0022	(24, 86)	0.0033
87	173	1	86	T(173, 86, 1)	0,0006	(1, 88)	0,0021	(1, 87)	0,0022	(25, 87)	0,0032
87	174	1	87	T(174, 87, 1)	0,0005	(1, 88)	0,0021	(1, 87)	0,0022	(25, 87)	0,0032
88	175	1	87	T(175, 87, 1)	0,0005	(1, 89)	0,0021	(1, 88)	0,0021	(25, 88)	0,0032
88	176	1	88	T(176, 88, 1)	0,0005	(1, 89)	0,0021	(1, 88)	0,0021	(25, 88)	0,0031
89	177	1	88	T(177, 88, 1)	0,0005	(1, 90)	0,0021	(1, 89)	0,0021	(25, 89)	0,0031
89	178	1	89	T(178, 89, 1)	0,0005	(1, 90)	0,002	(1, 89)	0,0021	(25, 89)	0,0031
90	179	1	89	T(179, 89, 1)	0,0005	(1, 91)	0,002	(1, 90)	0,002	(25, 90)	0,003
90	180	1	90	T(180, 90, 1)	0,0005	(1, 91)	0,002	(1, 90)	0,002	(26, 90)	0,003
91	181	1	90	T(181, 90, 1)	0,0005	(1, 92)	0,002	(1, 91)	0,002	(26, 91)	0,0029
91	182	1	91	$\Gamma(182, 91, 1)$	0,0005	(1, 92)	0,002	(1, 91)	0,002	(26, 91)	0,0029
92	183	1	91	T(183, 91, 1)	0,0005	(1, 93)	0,0019	(1, 92)	0,002	(26, 156)	0,0029
92	184	1	92	T(184, 92, 1)	0,0005	(1, 93)	0,0019	(1, 92)	0,0019	(26, 163)	0,0029
93	185	1	92	$\Gamma(185, 92, 1)$	0,0005	(1, 94)	0,0019	(1, 93)	0,0019	(26, 93)	0,0028
93	186	1	93	T(186, 93, 1)	0,0005	(1, 94)	0,0019	(1, 93)	0,0019	(26, 93)	0,0028
94	187	1	93	T(187, 93, 1)	0,0005	(1, 95)	0,0018	(1, 94)	0,0019	(27, 94)	0,0028
94	188	1	94	1(188, 94, 1)	0,0005	(1, 95)	0,0018	(1, 94)	0,0019	(27, 94)	0,0028
95	189	1	94	T(189, 94, 1) T(100, 05, 1)	0,0005	(1, 96)	0,0018	(1, 95)	0,0018	(27, 95)	0,0027
95	101	1	95	T(190, 95, 1) T(191, 05, 1)	0.0005	(1, 90) (1, 07)	0.0018	(1, 90)	0.0018	(27, 99)	0.0027
96	191	1	96	T(191, 90, 1) T(192, 96, 1)	0.0003	(1, 37) (1.97)	0.0018	(1, 90)	0.0018	(27, 90)	0.0026
97	193	1	96	T(192, 96, 1)	0.0004	(1, 98)	0.0017	(1, 97)	0.0018	(27, 97)	0.0026
97	194	1	97	T(194, 97, 1)	0.0004	(1, 98)	0.0017	(1, 97)	0.0017	(27, 97)	0,0026
98	195	1	97	T(195, 97, 1)	0,0004	(1, 99)	0,0017	(1, 98)	0,0017	(28, 98)	0,0025
98	196	1	98	T(196, 98, 1)	0,0004	(1, 99)	0,0017	(1, 98)	0,0017	(28, 98)	0,0025
99	197	1	98	T(197, 98, 1)	0,0004	(1, 100)	0,0017	(1, 99)	0,0017	(28, 99)	0,0025
99	198	1	99	T(198, 99, 1)	0,0004	(1, 100)	0,0017	(1, 99)	0,0017	(28, 146)	0,0025
100	199	1	99	T(199, 99, 1)	0,0004	(1, 101)	0,0016	(1, 100)	0,0017	(28, 100)	0,0024
100	200	1	100	T(200, 100, 1)	0,0004	(1, 101)	0,0016	(1, 100)	0,0016	(28, 100)	0,0024

TAB. 8.24: Resultados comparativos para árvores broom onde $d=\lceil\frac{n}{2}\rceil,$ 141 $\leq n\leq$ 200, inserindo uma aresta (t=1)

d	n	l	G	$\lambda_2(G)$	Efb	$G + E_{fb}$	E_{hp}	$G + E_{hp}$	E_{he}	$G + E_{he}$
4	5	1	T(5, 4, 1)	0.382	$\{(1, 5), (1, 3)\}$	2	$\{(1, 5), (1, 3)\}$	1.382	$\{(1, 4), (2, 4)\}$	1
4	6	2	T(6, 4, 1)	0.3249	$\{(1, 4), (2, 4)\}$	1.2679	$\{(1, 5), (1, 6)\}$	1.2679	$\{(1, 4), (2, 4)\}$	1
4	7	3	T(7, 4, 1)	0.2955	$\{(1, 1), (2, 1)\}$	1	$\{(1, 5), (1, 6)\}$	0.8214	$\{(1, 1), (2, 1)\}$	1
-1	•	4	T(1, 4, 1) T(2, 4, 1)	0.2774	[(1, 4), (2, 4)]	1	[(1, 5), (1, 6)]	0,0214	[(1, 4), (2, 4)]	1
4	0	-4 E	T(0, 4, 1) T(0, 4, 1)	0,2114	(1, 4), (2, 4)	1	$\{(1, 5), (1, 6)\}$	0,7433	1(1, 4), (2, 4)	1
4	9	0	T(9, 4, 1)	0,205	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,0972	$\{(1, 4), (2, 4)\}$	1
4	10	0	1(10, 4, 1)	0,256	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,6657	$\{(1, 4), (2, 4)\}$	1
4	11	7	T(11, 4, 1)	0,2492	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,6428	$\{(1, 4), (2, 4)\}$	1
4	12	8	T(12, 4, 1)	0,2438	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,6253	$\{(1, 4), (2, 4)\}$	1
4	13	9	T(13, 4, 1)	0,2394	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,6115	$\{(1, 4), (2, 4)\}$	1
4	14	10	T(14, 4, 1)	0,2358	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,6003	$\{(1, 4), (2, 4)\}$	1
4	15	11	T(15, 4, 1)	0,2328	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,591	$\{(1, 4), (2, 4)\}$	1
4	16	12	T(16, 4, 1)	0,2302	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,5833	$\{(1, 4), (2, 4)\}$	1
4	17	13	T(17, 4, 1)	0,228	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0,5766	$\{(1, 4), (2, 4)\}$	1
4	18	14	T(18, 4, 1)	0.2261	$\{(1, 4), (2, 4)\}$	1	$\{(1, 5), (1, 6)\}$	0.5709	$\{(1, 4), (2, 4)\}$	1
4	19	15	T(19, 4, 1)	0.2244	$\{(1, 4), (2, 4)\}$	1	$\{(1,5), (1,6)\}$	0.5658	$\{(1, 4), (2, 4)\}$	1
4	20	16	T(20, 4, 1)	0.2229	$\{(1, 1), (2, 1)\}$	1	$\{(1, 5), (1, 6)\}$	0.5614	$\{(1, 1), (2, 1)\}$	1
5	6	1	T(20, 4, 1) T(6, 5, 1)	0.2670	[(1, 4), (2, 4)]	1 2670	[(1, 6), (1, 6)]	1	[(1, 1), (2, 1)]	0.9917
5	7	2	T(0, 5, 1) T(7, 5, 1)	0.2013	1(1, 0), (1, 3)	1,2073	$\{(1, 0), (1, 4)\}$	1	(1, 5), (2, 5)	0,8366
5	0	2	T(7, 5, 1) T(8 + 1)	0,2234	$\{(1, 5), (2, 5)\}$	1 0.7021	$\{(1, 0), (2, 7)\}$	1 0.7620	$\{(1, 5), (2, 5)\}$	0,8200
э -	8	3	1(8, 5, 1)	0,2023	$\{(1, 5), (2, 5)\}$	0,7931	$\{(1, 0), (2, 7)\}$	0,7639	$\{(1, 5), (2, 5)\}$	0,7931
5	9	4	1(9, 5, 1)	0,1876	$\{(1, 5), (2, 5)\}$	0,7703	$\{(1, b), (2, 7)\}$	0,6711	$\{(1, 5), (2, 5)\}$	0,7703
5	10	5	1(10, 5, 1)	0,1775	$\{(1, 5), (2, 5)\}$	0,7537	$\{(1, 6), (2, 7)\}$	0,6168	$\{(1, 5), (2, 5)\}$	0,7537
5	11	6	T(11, 5, 1)	0,17	$\{(1, 5), (2, 5)\}$	0,741	$\{(1, 6), (2, 7)\}$	0,5804	$\{(1, 5), (2, 5)\}$	0,741
5	12	7	T(12, 5, 1)	0,1643	$\{(1, 5), (2, 5)\}$	0,731	$\{(1, 6), (2, 7)\}$	0,5541	$\{(1, 5), (2, 5)\}$	0,731
5	13	8	T(13, 5, 1)	0,1597	$\{(1, 5), (2, 5)\}$	0,7229	$\{(1, 6), (2, 7)\}$	0,534	$\{(1, 5), (2, 5)\}$	0,7229
5	14	9	T(14, 5, 1)	0,1561	$\{(1, 5), (2, 5)\}$	0,7162	$\{(1, 6), (2, 7)\}$	0,5183	$\{(1, 5), (2, 5)\}$	0,7162
5	15	10	T(15, 5, 1)	0,153	$\{(1, 5), (2, 5)\}$	0,7105	$\{(1, 6), (2, 7)\}$	0,5055	$\{(1, 5), (2, 5)\}$	0,7105
5	16	11	T(16, 5, 1)	0,1505	$\{(1, 5), (2, 5)\}$	0,7057	$\{(1, 6), (2, 7)\}$	0,495	$\{(1, 5), (2, 5)\}$	0,7057
5	17	12	T(17, 5, 1)	0.1483	$\{(1, 5), (2, 5)\}$	0,7016	$\{(1, 6), (2, 7)\}$	0.4861	$\{(1, 5), (2, 5)\}$	0.7016
5	18	13	T(18 5 1)	0 1464	$\{(1,5), (2,5)\}$	0.6979	$\{(1, 6), (2, 7)\}$	0.4785	$\{(1,5), (2,5)\}$	0.6979
5	19	14	T(19, 5, 1) T(19, 5, 1)	0.1448	$\{(1, 5), (2, 5)\}$	0.6947	$\{(1, 6), (2, 7)\}$	0.472	$\{(1, 5), (2, 5)\}$	0.6947
5	20	15	T(20, 5, 1) T(20, 5, 1)	0.1433	$\int (1, 5), (2, 5) \end{bmatrix}$	0.6010	$\int (1, 6) (2, 7)$	0.4663	f(1, 5), (2, 5)	0.6010
6	20	10	T(20, 0, 1) T(7, 6, 1)	0,1433	(1, 3), (2, 3)	1	$\{(1, 0), (2, 7)\}$	0,4005	$\{(1, 5), (2, 5)\}$	0.8458
6	0	1	T(7, 0, 1) T(8, 6, 1)	0,1981	$\{(1, 7), (1, 3)\}$	1 0.7715	$\{(1, 7), (1, 4)\}$	0,735	$\{(1, 0), (3, 0)\}$	0,8438
0	0	4	T(0, 0, 1)	0,1007	$\{(2, 0), (2, 7)\}$	0,7715	$\{(1, 7), (2, 8)\}$	0,7309	$\{(1, 0), (3, 0)\}$	0,7715
6	9	3	T(9, 6, 1)	0,1487	$\{(2, 6), (1, 7)\}$	0,726	$\{(1, 7), (2, 8)\}$	0,6552	$\{(1, 6), (3, 6)\}$	0,726
6	10	4	T(10, 6, 1)	0,137	$\{(2, 6), (1, 7)\}$	0,6948	$\{(1, 7), (2, 8)\}$	0,5745	$\{(1, 6), (3, 6)\}$	0,6948
6	11	5	T(11, 6, 1)	0,1288	$\{(2, 6), (3, 6)\}$	0,6719	$\{(1, 7), (2, 8)\}$	0,5233	$\{(1, 6), (3, 6)\}$	0,6719
6	12	6	T(12, 6, 1)	0,1227	$\{(2, 6), (3, 6)\}$	0,6544	$\{(1, 7), (2, 8)\}$	0,4883	$\{(1, 6), (3, 6)\}$	0,6544
6	13	7	T(13, 6, 1)	0,118	$\{(2, 6), (3, 6)\}$	0,6406	$\{(1, 7), (2, 8)\}$	0,4628	$\{(1, 6), (3, 6)\}$	0,6406
6	14	8	T(14, 6, 1)	0,1142	$\{(2, 6), (3, 6)\}$	0,6293	$\{(1, 7), (2, 8)\}$	0,4433	$\{(1, 6), (3, 6)\}$	0,6293
6	15	9	T(15, 6, 1)	0,1112	$\{(2, 6), (3, 6)\}$	0,62	$\{(1, 7), (2, 8)\}$	0,4279	$\{(1, 6), (3, 6)\}$	0,62
6	16	10	T(16, 6, 1)	0,1086	$\{(2, 6), (3, 6)\}$	0,6121	$\{(1, 7), (2, 8)\}$	0,4154	$\{(1, 6), (3, 6)\}$	0,6121
6	17	11	T(17, 6, 1)	0,1065	$\{(2, 6), (3, 6)\}$	0,6054	$\{(1, 7), (2, 8)\}$	0,4051	$\{(1, 6), (3, 6)\}$	0,6054
6	18	12	T(18, 6, 1)	0.1046	$\{(2, 6), (3, 6)\}$	0.5996	$\{(1, 7), (2, 8)\}$	0.3964	$\{(1, 6), (3, 6)\}$	0.5996
6	19	13	T(19, 6, 1)	0.103	$\{(2, 6), (3, 6)\}$	0.5945	$\{(1, 7), (2, 8)\}$	0.3889	$\{(1, 6), (3, 6)\}$	0.5945
6	20	14	T(10, 0, 1) T(20, 6, 1)	0,100	$\{(2, 6), (3, 6)\}$	0.59	$\{(1, 7), (2, 8)\}$	0.3825	$\{(1, 0), (0, 0)\}$	0.59
7	8	1	T(8, 7, 1)	0 1599	$\int (1 \ 8) \ (1 \ 2)^{1}$	1	$\int (1, 8) (1, 5) \int $	0.5858	$\int (1, 0), (0, 0) \int \int (1, 7) (2, 7) 1$	0.6942
7	0	1	T(0, 7, 1) T(0, 7, 1)	0,1022	(1, 0), (1, 0)	1	$\{(1, 0), (1, 0)\}$	0,5858	(1, 7), (3, 7)	0,0342
7	3	2	T(3, 1, 1) T(10, 7, 1)	0,1209	1(4, 1), (3, 1) f(2, 7), (2, 7)	0.504	1(1, 0), (0, 9)	0,5656	$\frac{1(1, 1), (3, 1)}{f(1, 7), (2, 7)}$	0.504
(10	3	1(10, 1, 1)	0,1148	$\{(2, 1), (3, 1)\}$	0,594	$\{(1, 0), (3, 9)\}$	0,5658	$\{(1, i), (3, i)\}$	0,394
(11	4	1(11, 7, 1)	0,1054	$\{(2, 7), (3, 7)\}$	0,5804	$\{(1, \delta), (3, 9)\}$	0,5371	$\{(1, 7), (3, 7)\}$	0,5037
7	12	5	1(12, 7, 1)	0,0987	$\{(2, 7), (3, 7)\}$	0,5541	$\{(1, 8), (3, 9)\}$	0,4815	$\{(1, 7), (3, 7)\}$	0,5409
7	13	6	1(13, 7, 1)	0,0936	$\{(2, 7), (3, 7)\}$	0,534	$\{(1, 8), (3, 9)\}$	0,4445	$\{(1, 7), (3, 7)\}$	0,5233
7	14	7	T(14, 7, 1)	0,0897	$\{(2, 7), (3, 7)\}$	0,5183	$\{(1, 8), (3, 9)\}$	0,4178	$\{(1, 7), (3, 7)\}$	0,5092
7	15	8	T(15, 7, 1)	0,0865	$\{(2, 7), (3, 7)\}$	0,5055	$\{(1, 8), (3, 9)\}$	0,3975	$\{(1, 7), (3, 7)\}$	0,4976
7	16	9	T(16, 7, 1)	0,084	$\{(2, 7), (3, 7)\}$	0,495	$\{(1, 8), (3, 9)\}$	0,3816	$\{(1, 7), (3, 7)\}$	0,488
7	17	10	T(17, 7, 1)	0,0818	$\{(2, 7), (3, 7)\}$	0,4861	$\{(1, 8), (3, 9)\}$	0,3687	$\{(1, 7), (3, 7)\}$	0,4799
7	18	11	T(18, 7, 1)	0,08	$\{(2, 7), (3, 7)\}$	0,4785	$\{(1, 8), (3, 9)\}$	0,358	$\{(1, 7), (3, 7)\}$	0,4729
7	19	12	T(19, 7, 1)	0,0784	$\{(2, 7), (3, 7)\}$	0,472	$\{(1, 8), (3, 9)\}$	0,349	$\{(1, 7), (3, 7)\}$	0,4669
7	20	13	T(20, 7, 1)	0.0771	$\{(2, 7), (3, 7)\}$	0,4663	$\{(1, 8), (3, 9)\}$	0.3413	$\{(1, 7), (3, 7)\}$	0,4616
8	9	1	T(9, 8, 1)	0.1206	$\{(1, 9), (0, 1)\}$	0.6972	$\{(1, 9), (0, 5)\}$	0.4679	$\{(1 \ 8) \ (4 \ 8)\}$	0.5858
8	10	2	T(10, 8, 1)	0 1029	$\{(2, 8), (1, 0)\}$	0.5858	$\{(1, 9), (1, 9)\}$	0.4639	$\{(1, 8), (4, 8)\}$	0.5858
8	11	2	T(10, 0, 1) $T(11 \circ 1)$	0.0017	[(2, 0), (0, 0)]	0.5776	f(1, 0), (0, 10)	0.4551	$\int (1 \ 8) \ (4 \ 0) \int$	0.5776
0	10	3	T(12, 0, 1) T(12, 0, 1)	0.0917	1(2, 0), (4, 0)	0.5207	$\{(1, 9), (3, 10)\}$	0.4331	1(1, 0), (4, 0)	0.5297
0	12	4	1(12, 8, 1) T(12, 2, 1)	0,0841	$\{(2, 0), (4, 9)\}$	0,0087	$\{(1, 9), (3, 10)\}$	0,4348	$\{(1, 0), (4, 0)\}$	0,0087
8	13	o C	1(13, 8, 1)	0,0785	$\{(2, \delta), (4, \delta)\}$	0,5105	$\{(1, 9), (3, 10)\}$	0,4054	$\{(1, \delta), (4, \delta)\}$	0,5105
8	14	6	1(14, 8, 1)	0,0743	$\{(2, 8), (4, 8)\}$	0,4927	$\{(1, 9), (3, 10)\}$	0,3784	$\{(1, 8), (4, 8)\}$	0,4891
8	15	7	T(15, 8, 1)	0,071	$\{(2, 8), (4, 8)\}$	0,482	$\{(1, 9), (3, 10)\}$	0,3567	$\{(1, 8), (4, 8)\}$	0,4722
8	16	8	T(16, 8, 1)	0,0683	$\{(2, 8), (4, 8)\}$	0,471	$\{(1, 9), (3, 10)\}$	0,3394	$\{(1, 8), (4, 8)\}$	0,4585
8	17	9	T(17, 8, 1)	0,0661	$\{(2, 8), (4, 8)\}$	0,4609	$\{(1, 9), (3, 10)\}$	0,3255	$\{(1, 8), (4, 8)\}$	0,4471
8	18	10	T(18, 8, 1)	0,0643	$\{\overline{(2, 8), (4, 8)}\}$	0,452	$\{(1, 9), (3, 10)\}$	0,314	$\{(1, 8), (4, 8)\}$	0,4376
8	19	11	T(19, 8, 1)	0,0628	$\{(2, 8), (4, 8)\}$	0,4442	$\{(1, 9), (3, 10)\}$	0,3044	$\{(1, 8), (4, 8)\}$	0,4294
8	20	12	T(20, 8, 1)	0,0614	$\{(2, 8), (4, 8)\}$	0,4374	$\{(1, 9), (3, 10)\}$	0,2963	$\{(1, 8), (4, 8)\}$	0,4224

TAB. 8.25: Resultados para árvores broom, k=1,onde $4\leq d\leq 8,\,d+1\leq n\leq 20,$ inserindo conjuntos de duas arestas (t=2)

d	n	l	G	$\lambda_2(G)$	E_{fb}	$G + E_{fb}$	E_{hp}	$G + E_{hp}$	E_{he}	$G + E_{he}$
9	10	1	T(10, 9, 1)	0,0979	$\{(1, 10), (1, 3)\}$	0,5858	$\{(1, 10), (2, 7)\}$	0,382	$\{(1, 9), (4, 9)\}$	0,4608
9	11	2	T(11, 9, 1)	0.0842	$\{(2, 10), (1, 11)\}$	0.4834	$\{(1, 10), (4, 11)\}$	0.382	$\{(1, 9), (4, 9)\}$	0.4506
9	12	3	T(12, 9, 1)	0.0752	$\{(2, 9), (5, 9)\}$	0.4483	$\{(1, 10), (4, 11)\}$	0.382	$\{(1, 9), (4, 9)\}$	0.4375
9	13	4	T(13, 9, 1)	0.0689	$\{(3, 9), (1, 9)\}$	0.4451	$\{(1, 10), (4, 11)\}$	0.382	$\{(1, 9), (4, 9)\}$	0.4226
9	14	5	T(14, 9, 1)	0.0643	$\{(3, 9), (2, 10)\}$	0.4366	$\{(1, 10), (4, 11)\}$	0.382	$\{(1, 9), (4, 9)\}$	0.408
9	15	6	T(15, 9, 1)	0.0607	$\{(3, 9), (2, 10)\}$	0.4286	$\{(1, 10), (2, 11)\}$	0.3577	$\{(1, 9), (2, 9)\}$	0.3946
9	16	7	T(16, 9, 1) T(16, 9, 1)	0.0579	$\{(3, 9), (2, 10)\}$	0.4199	$\{(1, 10), (4, 11)\}$	0.3334	$\{(1, 9), (4, 9)\}$	0.3829
9	17	8	T(17, 9, 1)	0.0556	$\{(3, 9), (2, 10)\}$	0.4111	$\{(1, 10), (4, 11)\}$	0.3149	$\{(1, 9), (4, 9)\}$	0.3728
9	18	9	T(18, 9, 1)	0.0538	$\{(3, 9), (2, 10)\}$	0.4029	$\{(1, 10), (4, 11)\}$	0.3002	$\{(1, 9), (4, 9)\}$	0.3641
9	19	10	T(19, 9, 1)	0,0522	$\{(3, 9), (2, 10)\}$	0,3954	$\{(1, 10), (4, 11)\}$	0,2883	$\{(1, 9), (4, 9)\}$	0,3564
9	20	11	T(20, 9, 1)	0,0508	$\{(3, 9), (2, 9)\}$	0,3886	$\{(1, 10), (4, 11)\}$	0,2784	$\{(1, 9), (4, 9)\}$	0,3498
10	11	1	T(11, 10, 1)	0,081	$\{(1, 11), (1, 3)\}$	0,5858	$\{(1, 11), (1, 6)\}$	0,3175	$\{(1, 10), (5, 10)\}$	0,382
10	12	2	T(12, 10, 1)	0,0702	$\{(2, 11), (6, 11)\}$	0,4154	$\{(1, 11), (4, 12)\}$	0,3161	$\{(1, 10), (5, 10)\}$	0,382
10	13	3	T(13, 10, 1)	0,0629	$\{(3, 10), (1, 7)\}$	0,3934	$\{(1, 11), (4, 12)\}$	0,314	$\{(1, 10), (5, 10)\}$	0,382
10	14	4	T(14, 10, 1)	0,0577	$\{(3, 10), (1, 7)\}$	0,3852	$\{(1, 11), (4, 12)\}$	0,3104	$\{(1, 10), (5, 10)\}$	0,382
10	15	5	T(15, 10, 1)	0,0538	$\{(3, 10), (4, 10)\}$	0,382	$\{(1, 11), (4, 12)\}$	0,3043	$\{(1, 10), (5, 10)\}$	0,382
10	16	6	T(16, 10, 1)	0,0508	$\{(3, 10), (4, 10)\}$	0,382	$\{(1, 11), (4, 12)\}$	0,2945	$\{(1, 10), (5, 10)\}$	0,382
10	17	7	T(17, 10, 1)	0,0483	$\{(3, 10), (4, 10)\}$	0,3735	$\{(1, 11), (4, 12)\}$	0,2824	$\{(1, 10), (5, 10)\}$	0,3735
10	18	8	T(18, 10, 1)	0,0464	$\{(3, 10), (4, 10)\}$	0,3662	$\{(1, 11), (4, 12)\}$	0,2702	$\{(1, 10), (5, 10)\}$	0,3598
10	19	9	T(19, 10, 1)	0,0447	$\{(3, 10), (4, 10)\}$	0,3612	$\{(1, 11), (4, 12)\}$	0,2593	$\{(1, 10), (5, 10)\}$	0,3484
10	20	10	T(20, 10, 1)	0,0434	$\{(3, 10), (4, 10)\}$	0,3556	$\{(1, 11), (4, 12)\}$	0,2498	$\{(1, 10), (5, 10)\}$	0,3388
11	12	1	T(12, 11, 1)	0,0681	$\{(1, 12), (1, 3)\}$	0,4384	$\{(1, 12), (1, 7)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,3156
11	13	2	T(13, 11, 1)	0,0595	$\{(2, 12), (1, 3)\}$	0,382	$\{(1, 12), (5, 13)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,3132
11	14	3	T(14, 11, 1)	0,0535	$\{(3, 11), (3, 7)\}$	0,3631	$\{(1, 12), (5, 13)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,3103
11	15	4	T(15, 11, 1)	0,0491	$\{(3, 11), (3, 6)\}$	0,3375	$\{(1, 12), (5, 13)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,3067
11	16	5	T(16, 11, 1)	0,0458	$\{(3, 11), (8, 11)\}$	0,3371	$\{(1, 12), (5, 13)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,3024
11	17	6	T(17, 11, 1)	0,0432	$\{(3, 11), (7, 11)\}$	0,3366	$\{(1, 12), (5, 13)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,2975
11	18	7	T(18, 11, 1)	0,0411	$\{(3, 11), (6, 11)\}$	0,3356	$\{(1, 12), (5, 13)\}$	0,2679	$\{(1, 11), (5, 11)\}$	0,2921
11	19	8	T(19, 11, 1)	0,0394	$\{(3, 11), (6, 12)\}$	0,334	$\{(1, 12), (5, 13)\}$	0,2596	$\{(1, 11), (5, 11)\}$	0,2866
11	20	9	T(20, 11, 1)	0,038	$\{(3, 11), (6, 12)\}$	0,331	$\{(1, 12), (5, 13)\}$	0,2465	$\{(1, 11), (5, 11)\}$	0,2811
12	13	1	T(13, 12, 1)	0,0581	$\{(1, 13), (1, 3)\}$	0,382	$\{(1, 13), (1, 7)\}$	0,2291	$\{(1, 12), (6, 12)\}$	0,2679
12	14	2	T(14, 12, 1)	0,0511	$\{(2, 13), (1, 5)\}$	0,3423	$\{(1, 13), (5, 14)\}$	0,2285	$\{(1, 12), (6, 12)\}$	0,2679
12	15	3	T(15, 12, 1)	0,0461	$\{(3, 12), (3, 7)\}$	0,3208	$\{(1, 13), (5, 14)\}$	0,2277	$\{(1, 12), (6, 12)\}$	0,2679
12	16	4	T(16, 12, 1)	0,0424	$\{(3, 12), (3, 6)\}$	0,2973	$\{(1, 13), (5, 14)\}$	0,2267	$\{(1, 12), (6, 12)\}$	0,2679
12	17	о С	1(17, 12, 1)	0,0395	$\{(3, 12), (9, 13)\}$	0,2875	$\{(1, 13), (5, 14)\}$	0,2252	$\{(1, 12), (0, 12)\}$	0,2679
12	18	0 7	1(18, 12, 1) T(10, 12, 1)	0,0373	$\{(3, 12), (8, 12)\}$	0,2836	$\{(1, 13), (5, 14)\}$	0,223	$\{(1, 12), (0, 12)\}$	0,2679
12	20	0	T(19, 12, 1) T(20, 12, 1)	0,0335	$\{(3, 12), (3, 13)\}$	0,2793	$\{(1, 13), (3, 14)\}$	0,2197	$\{(1, 12), (0, 12)\}$	0,2079
12	20	0	T(20, 12, 1) T(14, 12, 1)	0,0501	$\{(3, 12), (7, 12)\}$	0,2141	$\{(1, 13), (3, 14)\}$	0,2132	$\{(1, 12), (0, 12)\}$	0,2079
13	14	2	T(14, 13, 1) T(15, 13, 1)	0,0301	$\{(1, 14), (1, 3)\}$	0,382	$\frac{1}{1}$ $\frac{1}$	0,1981	$\frac{1}{1}$ $\frac{1}$	0,2284
13	16	3	T(16, 13, 1) T(16, 13, 1)	0.0402	$\{(2, 13), (2, 0)\}$	0.2796	$\{(1, 14), (0, 15)\}$	0.1981	$\{(1, 13), (0, 13)\}$	0.2266
13	17	4	T(10, 10, 1) T(17, 13, 1)	0.037	$\{(3, 14), (8, 14)\}$	0.2767	$\{(1, 14), (0, 15)\}$	0.1981	$\{(1, 13), (0, 13)\}\$	0.2255
13	18	5	T(18, 13, 1)	0.0346	$\{(3, 13), (9, 13)\}$	0.2633	$\{(1, 14), (6, 15)\}$	0.1981	$\{(1, 13), (6, 13)\}$	0.2242
13	19	6	T(19, 13, 1)	0.0326	$\{(4, 13), (1, 9)\}$	0.2512	$\{(1, 14), (6, 15)\}$	0.1981	$\{(1, 13), (6, 13)\}$	0.2228
13	20	7	T(20, 13, 1)	0,031	$\{(4, 13), (1, 9)\}$	0,2512	$\{(1, 14), (6, 15)\}$	0,1981	$\{(1, 13), (6, 13)\}$	0,2211
14	15	1	T(15, 14, 1)	0,0437	$\{(1, 15), (1, 3)\}$	0,3088	$\{(1, 15), (1, 8)\}$	0,1729	$\{(1, 14), (7, 14)\}$	0,1981
14	16	2	T(16, 14, 1)	0,0389	$\{(2, 15), (8, 15)\}$	0,279	$\{(1, 15), (6, 16)\}$	0,1726	$\{(1, 14), (7, 14)\}$	0,1981
14	17	3	T(17, 14, 1)	0,0354	$\{(3, 14), (3, 8)\}$	0,2613	$\{(1, 15), (6, 16)\}$	0,1723	$\{(1, 14), (7, 14)\}$	0,1981
14	18	4	T(18, 14, 1)	0,0326	$\{(3, 15), (11, 16)\}$	0,2475	$\{(1, 15), (6, 16)\}$	0,1719	$\{(1, 14), (7, 14)\}$	0,1981
14	19	5	T(19, 14, 1)	0,0305	$\{(4, 14), (3, 9)\}$	0,2417	$\{(1, 15), (6, 16)\}$	0,1713	$\{(1, 14), (7, 14)\}$	0,1981
14	20	6	T(20, 14, 1)	0,0288	$\{(4, 14), (3, 8)\}$	0,2305	$\{(1, 15), (6, 16)\}$	0,1707	$\{(1, 14), (7, 14)\}$	0,1981
15	16	1	T(16, 15, 1)	0,0384	$\{(1, 16), (1, 3)\}$	0,2758	$\{(1, 16), (1, 9)\}$	0,1522	$\{(1, 15), (7, 15)\}$	0,1726
15	17	2	T(17, 15, 1)	0,0344	$\{(2, 16), (1, 7)\}$	0,2574	$\{(1, 16), (7, 17)\}$	0,1522	$\{(1, 15), (7, 15)\}$	0,1722
15	18	3	T(18, 15, 1)	0,0314	$\{(3, 15), (10, 15)\}$	0,2337	$\{(1, 16), (7, 17)\}$	0,1522	$\{(1, 15), (7, 15)\}$	0,1718
15	19	4	T(19, 15, 1)	0,029	$\{(3, 16), (11, 17)\}$	0,215	$\{(1, 16), (7, 17)\}$	0,1522	$\{(1, 15), (7, 15)\}$	0,1714
15	20	5	T(20, 15, 1)	0,0271	$\{(4, 15), (3, 8)\}$	0,2098	$\{(1, 16), (7, 17)\}$	0,1522	$\{(1, 15), (7, 15)\}$	0,1709
16	17	1	T(17, 16, 1)	0,0341	$\{(1, 17), (1, 3)\}$	0,2679	$\{(1, 17), (1, 9)\}$	0,1351	$\{(1, 16), (8, 16)\}$	0,1522
16	18	2	$\Gamma(18, 16, 1)$	0,0307	$\{(2, 17), (9, 17)\}$	0,2297	$\{(1, 17), (7, 18)\}$	0,1349	$\{(1, 16), (8, 16)\}$	0,1522
16	19	3	$\Gamma(19, 16, 1)$	0,0281	$\{(3, 17), (2, 8)\}$	0,2115	$\{(1, 17), (7, 18)\}$	0,1347	$\{(1, 16), (8, 16)\}$	0,1522
16	20	4	T(20, 16, 1)	0,026	$\{(3, 17), (11, 16)\}$	0,2057	$\{(1, 17), (7, 18)\}$	0,1345	$\{(1, 16), (8, 16)\}$	0,1522
17	18	1	T(18, 17, 1)	0,0304	$\{(1, 18), (1, 3)\}$	0,2335	$\{(1, 18), (1, 10)\}$	0,1206	$\{(1, 17), (8, 17)\}$	0,1349
17	19	2	1(19, 17, 1)	0,0275	$\{(3, 17), (11, 18)\}$	0,2111	$\{(1, 18), (8, 19)\}$	0,1206	$\{(1, 17), (8, 17)\}$	0,1347
17	20	3	T(20, 17, 1)	0,0252	$\{(3, 18), (3, 9)\}$	0,1981	$\{(1, 18), (8, 19)\}$	0,1206	$\{(1, 17), (8, 17)\}$	0,1345
18	19	1	1(19, 18, 1)	0,0273	$\{(1, 19), (1, 3)\}$	0,2092	$\{(1, 19), (0, 15)\}$	0,1084	$\{(1, 18), (9, 18)\}$	0,1206
18	20	2	1(20, 18, 1) T(20, 10, 1)	0.0248	$\{(3, 18), (3, 10)\}$	0,1981	$\{(1, 19), (8, 20)\}$	0,1083	$\{(1, 18), (9, 18)\}$	0,1206
1 1 9	20	1	1 1(20, 19, 1)	0,0246	$\{(1, 20), (1, 3)\}$	0,1991	$\{(1, 20), (1, 11)\}$	0,0979	$\{(1, 19), (9, 19)\}$	0,1083

TAB. 8.26: Resultados para árvores broom, k=1, onde $9\leq d<20,$ $d+1\leq n\leq 20,$ inserindo conjuntos de duas arestas (t=2)

APÊNDICE 3: DESCRIÇÃO DAS CLASSES DO SISTEMA DESENVOLVIDO

Descrição das camadas e classes do sistema desenvolvido:

Camadas existentes:

Camada de núcleo: Camada responsável pelas classes basicas do sistema.

Camada Experimentos: Camada responsável pelas classes contendo as especificações individuais pertinentes a cada experimento.

Classes Principais:

AnalisadorDeGrafos: Classe responsável por calcular diversos parâmetros a respeito de grafos (ex. conectividade algébrica, autovalores laplacianos, vetor de Fiedler, etc.)

AnalisadorDeGrafosStarlike: Subclasse de AnalisadorDeGrafos, calcula informações específicas para starlikes.

ExtratorDeArestasDeDoubleBroom: Classe responsável por obter todos os tipos de arestas inseríveis em uma Double Broom.

ExtratorDeArestasDeStarlike: Classe responsável por obter todos os tipos de arestas inseríveis em uma Starlike.

DescritorDeGrafos: Classe responsável por montar o texto de informações relacionadas ao grafo.

DesenhistaDeGrafos: Classe responsável por criar e persistir os desenhhos dos grafos analisados.

DoubleBroom: Classe responsável por representar um grafo do tipo Double Broom no sistema.

EscritorDeDados: Classe responsável por persistir dados dos grafos.

GeradorDeGrafos: Classe responsável por criar os grafos analisados. Para utilizá-lo basta informar a classe de grafos desejada e os parâmetros necessários. (Como exemplo, para gerar uma double broom, basta chamar a função "gerar_double_broom", em conjunto com o número de folhas e o diâmetro desejado).

Grafo: Classe responsável por representar um grafo no sistema. Ela contém um atributo do tipo "networkx.Graph", um grafo da biblioteca NetworkX.

Starlike: Classe responsável por representar um grafo do tipo Starlike no sistema.

AlgoritmoDeHeuristicaBase: Classe base abstrata, da qual herdam todas as heurísti-

cas de aumento da conectividade algébrica.

AlgoritmoDeHeurísticaDePerturbação: Classe responsável por encapsular a estratégia de execução do algoritmo de heurística de força bruta.

AlgoritmoDeHeurísticaDeExcentricidade: Classe responsável por encapsular a estratégia de execução do algoritmo heurística de excentricidade.

AlgoritmoDeForcaBruta: Classe responsável por encapsular a estratégia de execução do algoritmo de força bruta.

ExperimentoBase: Classe base abstrata, da qual herdam todas as classes contendo os experimentos desejados.

Classes de Experimentos: Implementações da classe abstrata "ExperimentoBase", descrevendo os grafos e atributos desejados para a geração no teste.

GeradorDeHeurística: Classe responsável por executar a algoritmo correspondente a heurística proposta e informar a respectiva aresta sugerida.